doi: 10.3724/ SP.J.1201.2013.03076

抽水蓄能电站地下厂房振因仿真分析

王学谦,赵兰浩

(河海大学 水利水电学院,南京 210098)

摘要:利用三维有限元分析方法,对某抽水蓄能电站主厂房两台机组进行了动力特性及动力响应仿真分析研究。根据地下厂房整体自振频率、局部构件自振频率与厂房振动主频的错开度分析结果,厂房的剧烈振动是由局部支撑构件在振源激励频率下发生共振引起的。通过对比现场试验振动加速度分布规律和有限元模型时间历程响应数值计算得到的振动加速度分布规律的对比分析,发现引起厂房振动的主要水力振源为导叶后与转轮之间的压力脉动,频率为2倍叶片过流频率(100Hz)。对该抽水蓄能电站的振因分析的研究结果为今后抽水蓄能电站设计阶段的抗振校核和运行阶段振动原因分析提供了参考。

关键词:抽水蓄能电站;厂房;振动;振源位置;传递路径

中图分类号: TV 312 文献标识码: A 文章编号: 1672 1683(2013) 03-0076-06

Simulation Analysis of the Vibration Causes of Underground Powerhouse in Pumped Storage Power Station WANG Xue gian, ZHAO Lar hao

(College of Water Conservancy and Hydrop ower Engineering, Hohai University, Nanjing 210098, China)

Abstract: The three dimensional finite element analysis method was used to simulate the dynamic characteristics and dynamic response of two units in the main powerhouse of the pumped storage power station. According to analysis results of the natural vibration frequency of the whole powerhouse structure, natural vibration frequency of the partial structures, and the staggered degree of main vibration frequency of the powerhouse, resonance does not occur for the whole structure of powerhouse, and the servere vibration of the powerhouse is caused by the resonance of the partial support components under the excitation frequency of vibration source. With the comparative analysis of vibration acceleration distribution patterns obtained from the field tests and the time history response of the finite element model, the main hydraulic vibration source stimulating the powerhouse vibration is the pressure pulsation between the rotor and the vanes. The frequency of pressure pulsation (100 Hz) is twice of the blade overcurrent frequency. The analysis of the vibration causes of the pumped storage power station can provide references for the antir vibration check during the design stage and vibration cause analysis during the operation period of the pumped storage power station.

Key words: pumped storage power station; underground powerhouse; vibration; position of vibration source; transfer path

相对于普通水电站,抽水蓄能电站地下厂房具有孔洞 多、空间结构复杂、整体和局部刚度差别大、围岩与厂房之间 相互作用机理复杂等特点,因此机组及厂房振动问题,一直 以来都是水电站建设和运行过程中非常关注的课题¹¹,围绕 水电站厂房的振动问题也有不少研究成果。马震岳^[2]等曾 对蒲石河、宜兴、十三陵等抽水蓄能电站进行了整体振动预 测及振动分析;欧阳金惠等也对三峡等大型水电站厂房进行 了振动试验结果和振源分析;黄源芳^[3]等则针对国内外原型 水轮机运行过程中的水力、机械、电磁等问题进行了大量的 调研和分析工作。

过去,研究人员对厂房振动的研究主要集中在普通水电站厂房,近年来出现了一些针对抽水蓄能电站厂房振动的研究4,取得了一些成果。但是已有研究主要针对的是电站厂房的设计阶段,使用的分析方法也是根据规范采用的整体自振特性计算、共振复核和基于转频的动力时程分析,因此研究目的是为了符合设计要求。而在抽水蓄能电站建成后运行的过程中,或多或少地出现了一些振动问题,其中尤以十三陵和广蓄一期问题较为突出。由于抽水蓄能电站一般布

收稿日期: 2012-12-14 修回日期: 2013-05-02 网络出版时间: 2013-05-18 网络出版地址: http://www.cnki.net/kcms/detail/13.1334.TV.20130518.1744.034.html 基金项目: 国家自然科学基金项目(51079044); 国家高技术研究发展计划(863 计划)课题(2012AA112507) 作者简介: 王学谦(1987-), 男, 河北邢台人, 硕士研究生, 主要从事水工结构动力方面的研究。Email: xueqian0108@126.com 通讯作者: 赵兰浩(1980-), 男, 山东临沂人, 教授, 博士, 主要从事流固耦合、电站厂房静动力分析研究。Email: zlhhhu@163.com

• 76 • 试验研究

置为地下结构,产生振动问题后减振措施的实施较为困难且 代价较高,所以必须准确地确定振源位置和振动传递路径, 为后期抗振减振措施提供必要的参考依据。

本文结合某抽水蓄能电站在运行过程中厂房出现的高频振动问题,对引起该厂房振动的水力振源位置、振动的传 递方式及产生激振频率的原因进行深入的分析,以期对抽水 蓄能电站设计和振动特性分析提供一些合理建议。

1 工程概述

某抽水蓄能电站,电站安装4台单机250MW的机组,额 定水头305m,额定流量94.1m³/s,额定转速333.3r/min, 地下厂房位于水道系统尾部的微风化变质安山岩内,围岩以 II类为主。地下厂房洞室内自左至右依次为副厂房、主机 间、安装场,主机间发电机层以上为桥机工作空间,桥机安装 在牛腿上,牛腿和围岩锚固,牛腿受力向围岩进行传递。发 电机层以下结构为现浇混凝土整体结构,包括机组周围混凝 土结构、四周边墙结构和结构柱与楼板结构。蜗壳四周外包 混凝土三面临空,在下游侧与岩石和边墙联成一体,四周边 墙结构为混凝土连续墙结构,紧贴岩石面浇筑,并用锚杆连 接。2号机组段与3号机组段之间、主机间与安装场和副厂 房之间均设有结构缝。电站机组采用悬式发电机和可逆式 水轮机,拆卸方式为上拆,蜗壳采用充水保压的方式浇筑,金 属蜗壳和外围混凝土联合受力。

目前,该抽水蓄能电站在运行过程中出现了强烈的振动,为此对机组和厂房进行了一系列的现场试验,包括变负荷试验、变转速试验、变励磁试验、空载、抽水等。经过对试验结果的分析,认为:(1)该抽水蓄能电站厂房振动主频为100 Hz 明显,杂波含量很低;(2)已检测到的最大加速响应发生在发电机层楼板上,大小为2.5g;(3)振源为水力因素引起的厂房振动。

2 研究思路与方法

2.1 研究思路

本文利用三维有限元分析方法,对某抽水蓄能电站主厂 房两台机组进行了动力特性及动力响应仿真分析研究。思 路如下:首先运用自振特性分析方法对整体结构进行了自振 特性分析和共振复核,针对薄弱构件运用"无质量"分析方 法⁵¹将除分析外的构件作为无质量处理,仅提供刚度进行自 振特性计算和共振复核;进而采用谐响应分析方法,由位移 幅值进一步确定共振构件共振频率范围;同时将外荷载假定 为简谐荷载,运用时间历程分析方法^[6]分析结构在高频荷载 下的振动响应分布规律;最后结合水轮机参数和现场试验结 果,进行动力特性和现场测试的综合分析。

2.2 基本理论

2.2.1 自振特性分析方法

根据最小势能原理可以导出结构动力学基本运动方 程为:

$$Ka(t) + C\dot{a}(t) + M^{3/4}(t) = Q(t)$$
(1)

式中:**K**、**C**、**M**分别为结构的刚度矩阵、阻尼矩阵和质量矩阵;**a**(t)、**a**(t)、³(t)分别为位移向量、速度向量和加速度向

量; Q(t) 为结构的外荷载矩阵。

一般结构系统的阻尼对自振频率和振型的影响很小,因此,可略去阻尼影响来确定系统的自由振动频率和振型,即;

$\mathbf{M}^{\prime}(t) + \mathbf{K}\mathbf{a}(t) = 0$	(2)
其解可以假设为以下形式:	
$a = \phi \sin \omega (t - t_0)$	(3)

其中: $\phi \in n$ 阶向量, $\omega \in \phi \in \phi$ 的振动频率, $t \in \phi$ 时间变量, t_0 是中初始条件确定的时间常数。

将式(3)代入式(2),就可以得到一个广义特征值问题,即:

$$\mathbf{K}\phi - \omega^2 \mathbf{M}\phi = 0 \tag{4}$$

对以上方程采用以反幂法为基础的直接虑频法进行求 解,得到 n 个特征解: $(\omega_1^2, \phi_1), (\omega_2^2, \phi_2), ..., (\omega_n^2, \phi_n)$ 其中特 征值 $\omega_1, \omega_2, ..., \omega_n$ 代表系统的 n 个固有频率;特征向量 $\phi_1, \phi_2, ..., \phi_n$ 代表系统的 n 个固有振型。

2.2.2 谐响应分析方法

当式(1)中的 **Q**(t)为简谐激振荷载时,根据微分方程理 论,可求得式(1)非其次方程的解包含两部分内容:自由振动 部分和稳态响应部分,其中自由振动部分由于阻尼的存在迅 速的衰减消失,而稳态振动则是以激振频率持续振动。故在 进行谐响应分析时式(1)中激振力 **Q**(t)和方程的解**a**(t)可以 表达为:

$$\boldsymbol{Q}(t) = \left(\boldsymbol{Q}_{\max} e^{i\Psi} \right) e^{i\omega t} = \left(\boldsymbol{Q}_{1} + i\boldsymbol{Q}_{2} \right)^{\Psi_{i}\omega}$$
(5)

$$\boldsymbol{a}(t) = (\boldsymbol{a}_{\max} e^{i^{\varphi}}) e^{i^{\omega}} = (\boldsymbol{a}_{1} + i\boldsymbol{a}_{2}) e^{i^{\omega}t}$$
(6)

式中: $Q_{max} \cdot a_{max}$ 分别为激振力和位移幅值; Ψ 为激振力相位 角; Φ 为位移相位角; $Q_1 \cdot Q_2$ 分别为激振力实部和虚部; a_1, a_2 分别为位移实部和虚部。

将式(5)、(6)代入式(1),可得谐响应分析的运动方程 为:

$$(-\omega^2 \mathbf{M} + i\omega \mathbf{C} + \mathbf{K}) (\mathbf{a}_1 + i\mathbf{a}_2) = (\mathbf{Q}_1 + i\mathbf{Q}_2)$$
(7)

通过对模型的原始方程直接积分进行求解,无需提取结构的特征频率,较基于模态的分析方法更为精确。

2.3 仿真计算模型

某抽水蓄能电站主厂房 4 台机组结构形式相同,采用两 机一组的形式,选取厂房的 1 号、2 号机组段进行有限元计 算。计算模型范围取为:顺河向,厂上 0+ 014.200 m 至厂下 0+ 020.000 m;横河向,厂左 0+ 016.00 m 至厂左 0+ 033.20 m。模型高度从尾水管层 402.70 m 高程至发电机层 430.70 m 高程。计算模型模拟了集水井、尾水管外围混凝土、座环、 蜗壳外围混凝土、机墩、风罩、各层楼板、厂房边墙和结构柱 等结构。由于某抽蓄电站在运行过程中出现了强烈的振动 情况,且大都主要表现在楼板和各楼层的结构柱,对于一些 并不会对楼板,结构柱等振动强烈部位产生较大影响的廊道 和机墩进人孔进行了适当的简化,所有混凝土结构及其它开 孔均按实际体型尺寸进行模拟,厂房结构有限元网格见图 1。

计算模型的整体坐标系: 垂直向上为 Z 轴正方向、垂直 水流为 X 轴方向, 正方向指向左侧; 顺河向为 Y 轴方向, 正 方向指向上游。厂房结构整体计算模型的结点数为 75 169, 单元数为 70 752。

图 1 1号、2 号机组段厂房整体有限元模型网格 Fig. 1 The finite element model grids of the No. 1 and

No. 2 units of the powerhouse

3 计算参数及实测压力脉动特征

3.1 计算参数

根据地址勘测资料,岩石、混凝土、座环等相关力学参数 见表1,其中岩石的单位弹性抗力系数取为15×10⁶ kN/m³。

耒	1 2	材	创	ì	笛	紶	勬
23	1 '	~		FI .	#	~	~~

Table 1 The material parameters							
材料	弹性模量 E/GPa	泊松比μ	重度 r/(kN•m ⁻³)				
岩石	35	0.2	30				
混凝土	28	0.167	25				
钢材	210	0.28	78.5				

3.2 机组参数及实测压力脉动特征频率

某抽水蓄能电站的水泵水轮机的额定转速为 333.3 r/min,最大飞逸转速为 535.0 r/min,固定导叶及活动导叶 均 20 个,转轮叶片 9 个。

根据所提供的现场测试资料分析认为,在单机运行过程

中,随着负荷的增加振动逐渐增大,因此本文选择试验单机 满负荷为 250 MW 发电工况下的测试数据作为动力响应计 算的动荷载输入依据,试验结果见表 2。

表 2 压力脉动特征频率

Table 2 Characteristic frequency of pressure fluctuation

测点位置	主频 /Hz	主频幅值 /kPa	测点位置	主频 / H z	主频幅值 /kPa
蜗壳进口	7.988	20.35	锥管进口	2.08	12.69
活动导叶出口	49. 995	457.74	肘管进口	2.78	13.04
无叶区	99.99	318.27	肘管中部	4.17	18.00
转轮出口	99.99	158.42	肘管出口	2.08	12.53

4 动力特性分析

4.1 厂房整体自振特性

根据已经产生振动的实际情况,充分分析厂房振动整体 振动的可能性,本文根据对三峡、岩滩、红石等水电站所做的 分析手段,选取四种边界条件进行自振特性的分析:(1)上下 自由;(2)上下游全部连杆约束;(3)水轮机层以下固定约束, 以上弹性连杆约束;(4)上下游固定约束。

前20阶自振频率的计算结果为:整体结构在边界1的 约束作用下前4阶振型主要为上下游方向的振动,从第5阶 开始表现为结构上部的楼板和结构柱的振动。整体结构在 边界2、3的约束作用下除第1阶表现为厂房上部的横河向 振动外,其余振型均表现为厂房上部楼板和结构柱的振动。 整体结构在边界4的约束作用下均表现为上部楼板带动结 构柱等薄弱构件的振动。自振频率见表3。

阶	边界			阶	边界				
次	1	2	3	4	次	1	2	3	4
1	2.959	16.257	18.068	25.406	11	32.358	36.707	38.078	44.694
2	15.181	24.172	24.640	28.475	12	32.622	37.929	39.012	45.200
3	16.411	26.014	26.718	31.690	13	33.240	38.605	39.659	46.475
4	23.394	28.853	29. 583	34.044	14	34.483	40. 207	40.916	47.281
5	24.770	29.432	30. 231	36.024	15	34.748	41.336	42.372	48.544
6	25.166	32. 221	32.980	38.236	16	35.114	41.861	43.111	49.010
7	27.131	33.638	34.686	40.073	17	36.117	42.947	43.956	49.207
8	27.574	35.050	35.355	40.679	18	36.400	43.815	44.597	49.357
9	29.269	35.942	37.310	41.557	19	36.928	44.399	45.729	50. 532
10	30.170	36.316	37.492	42. 261	20	37.150	45.743	46.650	51.017

Table 3 Natural frequency of the whole structure of powerhouse

由表3可知,上下游边界的约束条件对主厂房自振频率 的影响较大,对厂房整体结构上下游向和横河向约束越严 格,自振频率越大。若不考虑整体厂房的振动,发电机层楼 板的起振频率均为24~25 Hz之间,可见上下游边界约束的 严格对厂房局部构件自振频率的影响较小。

根据厂房实测振动频率特性进行共振复核,依据20%~30%的错开度评价标准¹,厂房的实测振动主频和四种边界条件下的整体自振频率错开度均大于30%,则厂房整体结构并未在100 Hz时发生共振,100 Hz的振动频率应为迫振频率。

4.2 厂房局部构件自振特性

理论上,模拟一定范围的围岩更为科学和合理,但从实用的角度分析,将围岩处理为弹性支承边界更为方便和直观¹¹。本文采用能够反应围岩弹性和抗力的弹性连杆模拟 围岩对结构的约束作用。

为了进一步分析厂房整体结构的迫振原因,试图对厂房 的局部构件进行自振特性分析和共振复核,为此,选取整体 结构中的结构柱和楼板等薄弱构件进行自振特性分析。由 文献[8]可知,抽水蓄能电站局部构件对边界条件较为不敏

• 78 • 试验研究

感,改变围岩对结构的约束,局部构件的自振频率变化较小, 所以本文选取第三种边界条件进行计算。局部构件的自振 频率和100 Hz 主频的错开度见图 2。

Fig. 2 Comparison of the resonance staggered degree of partial structure of powerhouse

从图 2 可以看出, 在共振复核中选择 20% 作为共振发生与否 的界限时, 局部构件水轮机层结构柱、母线层结构柱、风罩、 机墩与振动主频均存在共振阶次。其中水轮机层结构柱的 共振阶次从 1~16 阶, 最小共振错开度为 0.5%; 母线层结构 柱的共振阶次从 1~15 阶, 最小共振错开度为 2.38%; 风罩 的共振阶次从 3~14 阶, 最小共振错开度为 1.72%; 机墩的 共振阶次从 7~16 阶, 最小共振错开度 2.26%。可见, 在厂 房的整体结构虽未发生共振, 但存在局部构件共振环节, 使 得振动在此环节上产生振动放大作用。

5 厂房振动响应分析

为了研究厂房结构的振动原因,本文采用谐响应和时间历 程分析方法计算厂房结构在水力脉动压力作用下的振动响应。

5.1 谐响应分析

假设水轮机流道内的脉动压力沿流道壁面同相位分布, 可能与实际情况不符,但对厂房的振动影响并不十分显著, 关键是振动的频率和幅值^[9],根据表 3 现场实测试验数据, 选取蜗壳进口处的幅值作为频率响应计算的幅值,由于厂房 中各局部构件的自振频率相差较大,故取计算频率范围为 1~150 Hz,作为分布面荷载施加到整个蜗壳内壁上。水轮 机层结构柱、母线层结构柱、机墩和风罩的振动反应见图 3、 图 4。

图 3 局部构件 X 向简谐振动反应

Fig. 4 Dynamic response in the Y direction of partial structure

从图 3、图 4 可以看出,局部构件响应值较大频率范围大 致分为两个区间,其中 X 向振动反应较大值集中在 80~ 120 Hz 范围内, Y 向振动反应较大值集 中在 40~ 70 Hz 范围内。 可见 100 Hz 的振动主频引起了 X 向较大的振动响应值,而 同频率下在 Y 向的振动响应值稍小。比较各局部构件在 100 Hz 频率激励作用下的振动响应值,可以看出,水轮机层 结构柱和母线层结构柱的响应值最为突出,振动放大作用明 显。这一结论基本与自振特性的计算结果相吻合,进一步说 明上述四种局部构件在 100 Hz 的频率作用下存在共振环节。

5.2 动力时程响应分析

水轮机发电机组的周期性转动所引起的动荷载为周期 性荷载,在这种周期性激振作用下的强迫振动,包含过渡过 程和稳态响应两部分^[10]。由于厂房结构中阻尼的存在,过 渡过程是迅速衰减的瞬态振动,在厂房运行过程中所测试得 到的厂房振动主频即为水力脉动压力的主频。本文根据提 供的现场测试数据表 1,将所测到的与 100 Hz 接近的频率和 幅值作为简谐荷载的频率和幅值输入到结构的响应部位进 行动力时程分析,将阻尼矩阵考虑为瑞利阻尼,采用基于广 义 New mark^β法的数值离散格式进行求解^[11]。为了进一步 分析蜗壳内水力脉动对厂房结构的影响,假设蜗壳内水力脉 动主频同样为100 Hz。以发电机层楼板为例,现场试验结果 如图 5,计算结果见图 6- 图 8。

由于荷载为单独施加,通过分析动力响应幅值来确定振 源位置已没有太大意义,更应该关注的是动力响应的分布规 律。对比分析图 5-图 8,从发电机层楼板 Z向的振动反应 分布规律可以得出,发电层楼板在无叶区压力脉动和活动导 叶出口压力脉动的激励下 Z向振动加速度分布和现场测试 得到的 Z向振动加速度分布相同,均表现为:(1)较大振动加 速度均出现在结构缝较近位置。(2)距离风罩较近位置振动

the generator floor under the pressure fluctuation behind guide vanes

图 8 假设蜗壳内脉动压力作用下的发电机层楼板 Z 向 加速度分布

Fig. 8 Distribution of vibration acceleration in the Z direction of the generator floor under the pressure fluctuation in the hypothetical volute

加速度并不大。(3) 在距离激励机组较远位置的振动响应较 小。图 8 中当具有 100 Hz 的脉动压力作用在蜗壳内壁上 时,发电机层楼板 Z 向振动较大部位分布在风罩周围,可见 机墩及风罩对振动的传递起主要作用。所以引起厂房振动 的振源位置并不在蜗壳内,而应该在活动导叶出口至转轮间 的流道内。

通过提供的机组参数对可能产生 100 Hz 的水力脉动力 进行分析¹²可知,水轮发电机组的转频为 5.555 Hz,机组甩 负荷达到飞逸转速时,对应的频率为 8.92 Hz,机组甩负荷为 电站运行中的过渡过程,可以不作为振源频率产生的主要方 面。而额定工况下叶片的过流频率为 49.995 Hz,其倍频即 为 99.99 Hz,与 100 Hz 极为接近,导叶出口脱流引起的脉动 力频率为 111.1 Hz,也与 100 Hz 接近。以上理论分析和现 场试验结果极为吻合,激振源极可能为蜗壳尾舌和转轮叶片 间水流的相互干涉,频率为叶片过流频率的倍频^[13]。

综合现场测试结果、厂房的振动响应分析结果、动力特 性分析结果和水力脉动频率理论分析结果得出,该抽水蓄能 电站厂房的振动起源为蜗壳尾舌和转轮叶片间的流道内的 水力干涉,产生了能量较大的 100Hz 水力脉动,主要通过水 轮机层结构柱和母线层结构柱对振动进行进一步的放大作 用,将较大的振动传递给楼板和其他支撑结构,使得厂房整体结构产生迫振。

6 结语

抽水蓄能电站的厂房结构较为复杂,单纯的通过整体自 振特性分析和基于转频选取一定水头高度作为幅值的动力 响应分析来判断水电站厂房在未来运行过程中可能出现的 振动问题是不够的,应对水电站实际情况增加叶片过流频率 倍数工况进行共振复核和动力响应计算。当振动问题出现 时,单纯的依靠经验解决厂房的振动问题较为困难,必须运 用现场试验和数值模拟两种手段进行分析。对比仿真分析 结果和现场监测结果时,更应该注重动力响应的分布规律。

本文通过对某抽水蓄能电站的振动研究成果表明,由于 蜗壳尾舌和转轮叶片间水流的相互干涉作用使得两倍的叶 片通过频率成为了主要的激振源,频率为100Hz,结果与现 场测试数据吻合。水电厂厂房在此激振源的作用下虽未发 生结构的整体振动,但是水轮机层结构柱和发电层结构柱等 局部构件处发生了局部共振,同时对振动的传递和放大提供 了路径,从而在发电层楼板远离机墩、风罩等跨度较大部位 测到较大的振动加速度。

参考文献(References):

- [1] 陈婧,马震岳,威海峰,等. 宜兴抽水蓄能电站地下厂房结构振动反应分析[J].水利发电学报. 2009, 28 (5): 91, 195 199.
 (CHEN Jing, MA Zherryue, QI Hai feng, et al. Research on Dynamic Response of Powerhouse Structure of Yix ing Pumped storage Project[J]. Journal of Hydroelectric Engineering, 2009, 28(5), 195-199. 91. (in Chinese))
- [2] 马震岳,董毓新.水电站机组与厂房振动的研究与治理[M].北京:中国水利水电出版社,2004.(MA Zherryue, DONG Yurxin.Vibration and Its Corrective Actions of Water Tturbine Generator Sset and Power House[M]. Beijing: China Water Power Press,2004.(in Chinese))
- [3] 黄源芳,刘光宁,樊世英.原型水轮机运行研究[M].北京:中国 电力出版社, 2010.(HUANG Yuan fang, LIU Guang ning, FAN Shiying. Research on Prototype Hydro-Turbine Operar tion[M]. Beijing: China Electric Power Press, 2010.(in Chr nese))
- [4] 文洪,张春生,刘郁子,等. 天荒坪电站地下厂房结构动静力分析及设计[J].水力发电,1998,(8):2831.41.(WEN Hong, ZHANG Churrsheng, LIU Yuzi, et al. Analysis and Ddesign of Dynamic and Static Forces of Underground Power House Structure of Tianhu angping Pumped storage Power Station[J]. Water Power, 1998, (8):28-31.41.(in Chinese))
- [5] 孙万泉.水电站厂房结构振动分析及动态识别[D].大连:大连 理工大学,2004.(SUN Warr quan. Research on Structure Vr bration and Identification of Hydropower House[D]. Dalian: Dalian University of Technology, 2004.(in Chinese))
- [6] 张宏战,相昆山,马震岳.机组振动荷载作用下大型水电站厂房 振动反应分析[J].水利与建筑工程学报,2011,9(5):4F44. (ZHANG Hong zhan, XIANG Kurr shan, MA Zherr yue. Analysis for Vibration Responses of Large scale Hydropower House under Vibration Loads of Hydroelectric Units[J]. Journal of

• 80 • 试 验 研 究

Water Resources and Architectural Engineering, 2011, 9(5): 41-44. (in Chinese))

- [7] SL 266 2001,水电站厂房设计标准[S].(SL 266 2001, Design Code for Hydropower House[S].(in Chinese))
- [8] 李慧君.水电站地下厂房内源振动计算模型和边界条件研究
 [D].大连:大连理工大学,2004.(LI Hur jun.Study on the Dynamic Numerical Modle and Boundary of Underground Hydropower House under the Action of Internal Dynamic Loadings
 [D]. Dalian: Dalian University of Technology, 2004.(in Chrnese))
- [9] 陈婧, 马震岳, 刘志明, 等. 水轮机 压力脉动 诱发厂房 振动分析 [J]. 水力发电, 2004, (5): 24 27. (CHEN Jing, M A Zherr yue, LIU Zhi ming. et al. Vibration Analysis of Power Hhouse due to the Pressure Pulsation of Hydro turbine[J]. Water Power, 2004, (5): 24 27. (in Chinese))
- [10] 马震岳,董毓新.水轮发电机组动力学[M].大连:大连理工大

学出版社, 2003. (M A Zherr yue, DONG Yur xin. Dynamics of Water Turbine Generator Set [M]. Dalian: Dalian University of Technology Press, 2003. (in Chinese))

- [11] 朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社,2009.(ZHU Bo fang. The Finite Element Method Theory and Applications[M]. Beijing: China Water Power Press, 2004.(in Chinese))
- [12] 李慧君.水电站地下厂房内源振动计算模型和边界条件的研究[D].大连:大连理工大学,2009.(LI Hui jun.Study on the Dynamic Numerical M odel and Boundary of Underground Hydropower House under the Action of Internal Dynamic Loading[D]. Dalian: Dalian University of Technology, 2009.(in Chinese))
- [13] Netsch H, Giacometti A. Axial Flow-induced Vibrations in Large High head Machines [J]. Water Power and Dam Corr struction, 1986, (1): 37-39.

(上接第75页)

- [7] 张有天,刘中.降雨过程裂隙网络饱和/非饱和、非恒定渗流分析[J].岩石力学与工程学报,1997,16(2):104111.(ZNAGN Yourtian, LIU Zhong. Saturated/Unsaturated, Unsteady Seepr age Analysis of Rock Fractured Networks Due to the Percolar tion of Rainfall[J]. Chinese Journal of Rock Mechanics and Err gineering, 1997, 16(2):104111.(in Chinese))
- [8] 秦俊虹. 基于块体系统理论的非连续性岩体边坡稳定分析和评价[D]. 南京: 河海大学, 2009. (QIN Jurrhong. Research and Applications of Discontinuous Deformation Analysis in Slope Stability Evaluation[D]. Nanjing: Hehai University, 2009. (in Chinese))
- [9] 李晓莲, 余云燕, 崔建林. 基于 FLAC3D 强度折减法的边坡稳定性研究 [J]. 宝鸡文理学院学报(自然科学版), 2012, 32(2):
 ト 2. (LI Xiaσ lian, YU Yur yan, CUI Jiar lin. Stability Study of Slope Based on Shear Strength Reduction Method with FLAC^{3D}[J]. Journal of Baoji University of Arts and Sciences (Natural Science), 2012, 32(2): ト2. (in Chinese))
- [10] Duncan J M. State of the art: Limit equilibrium and finite element analysis of slopes [J]. Journal of Geotechnical Engineering, ASCE, 1996, 122(7): 577-596.
- [11] 李宗伟, 尹大娟. 基于强度折减法的边坡稳定性分析[J]. 长春 工程学院学报, 2011, 12(3): 32. (LI Zong wei, YIN Dar juan. The Slope Stability Analysis Based on Strength Reduction[J]. Journal of Changchun Institute of Technology(Social Science)

Edition), 2011, 12(3): 32. (in Chinese))

- [12] 王小波,徐文杰,张丙印,等. DDA 强度折减法及其在东苗家 滑坡中的应用[J].清华大学学报(自然科学版),2012,52(6): 814 815. (WANG Xiao bo, XU Werr je, ZHANG Bing yin, et al. Strength Reduction of DDA and Its Application in Dongmir aojia Landslide [J]. Journal of Tsinghua University (Science and Technology), 2012, 52(6): 814 815. (in Chinese))
- [13] 邬爱清,丁秀丽,卢波,等. DDA 方法块体稳定性验证及其在 岩质边坡稳定性分析中的应用[J].岩石力学与工程学报, 2008, 27(4):665-666.(WU Aiqing, DING Xiurli, LU Bo, et al. Validation for Rock Block Stability and Its Application to Rock Slope Stability Evaluation Using DDA M ethod [J]. Chinese Journal of Rock M echanics and Engineering, 2008, 27 (4):665-666.(in Chinese))
- [14] 沈振中,大西有三. 基于非连续变形分析的水库边坡稳定分析 方法[J].水利学报,2004(3):117-122.(SHEN Zherr zhong, Ohnishi Yuzo. Stability Analysis Method for Reservoir Rock Slope Based on Discontinuous Deformation Analysis[J].Journal of Hydraulic Engineering, 2004(3):117-122.(in Chinese))
- [15] 沈振中,郑磊. 基于数值流形方法的水库岩体边坡稳定分析 [J].水电能源科学, 2006, 24(1): 32 33, 96. (SHEN Zhenr zhong, ZHENG Lei. Stability Analysis for Reservoir Rock Slope Based on Numerical Manifold Method[J]. Water Resources and Power, 2006, 24(1): 32-33, 96. (in Chinese))