DOI: 10.13476/j. cnki. nsbdqk. 2014.04.022

考虑颗粒形状的粗粒土渗透特性试验研究

邱珍锋1,2, 卢孝志1,2, 伍应华1,2

(1.重庆交通大学国家内河航道整治工程技术研究中心,重庆400074;2.重庆交通大学水利水运工程教育部重点实验室,重庆400074)

摘要: 粗粒土的渗透特性与物质成分、颗粒级配、颗粒形状、密实度等因素相关。通过室内垂直渗透试验,探讨了土体颗粒形状、颗粒级配和试样密实度对粗粒土渗透系数的影响。九组正交试验结果的极差及方差分析表明,级配对 渗透性的影响最大;两组颗粒形状对比分析试验结果表明,试样渗透系数随着颗粒球形度增大而增大。通过对试验 结果反映的渗透特性进行分析,总结了以渗透系数作为变量的临界水力梯度估算公式。

关键词:粗粒土;渗透系数;颗粒级配;干密度;颗粒形状

中图分类号: TU411.4 文献标志码: A 文章编号: 1672-1683(2014) 04 01 02-05

Experimental Research on the Permeability Property of Coarse Grained Soils Considering the Particle Shape

QIU Zhen feng^{1, 2}, LU Xiao zhi^{1, 2}, WU Ying hua^{1, 2}

(1. National Engineering Research Center f or Inland Waterway Regulation, Chongqing Jiaotong University, Chongqing 400074, China; 2. Key Laboratory of Hydraulic and Waterway Engineering of Ministry of Education,

Chongqing Jiaotong University, Chongqing 400074, China)

Abstract: The permeability property of coarse grained soils is closely related to material composition, grain size distribution, particle shape, and particle density. Based on the laboratory permeability test, the effects of particle shape, grain size distribution, and particle density on the permeability property of coarse grained soils were studied. Nine orthogonal experiments and two particle shape experiments were performed. The results showed that grain size distribution has the largest impact on permeability based on the range analysis and variance analysis of the orthogonal tests, and permeability increases with the increasing of part i cle sphericity based on the comparative analysis of two particle shape tests. The estimation formula of critical hydraulic gradient was proposed using the permeability coefficient as a variable based on the analysis of permeability characteristics reflected by the above tests.

Key words: coarse grained soils; permeability coefficient; grain size distribution; dry density; particle shape

土体材料是典型的孔隙介质,其渗透特性与形成孔隙结构的颗粒大小、形状、级配组成等因素密切相关^[1]。目前,关于颗粒级配、干密度、砾石和细颗粒含量等因素对渗透特性影响的研究成果较多^[26],而颗粒形状的影响往往被忽略,例如周中等^{78]}对粗颗粒土进行了砾石含量、孔隙比、颗粒形状三种因素的渗透特性正交试验,认为砾石含量对渗透性的贡献比空隙比、颗粒形状要大。虽然颗粒形状量化指标繁多,但多数学者认为采用磨圆度和球形度进行分析比较合适^{910]}。另外,颗粒表面粗糙程度也对宏观力学有一定的影响,刘清秉等曾^[11-12]采用球形度、磨圆度、粗糙度分析了颗粒形状对土体材料剪切强度和桩端阻力等力学指标的影响。

为了分析颗粒形状对渗透特性的影响,本文结合颗粒形 状量化分析方法,采用常水头渗透试验,对卵石、卵石破碎 料、泥岩颗粒料三种粗颗粒材料的级配、干密度、颗粒形状的 正交设计进行了垂直渗透试验,并分析了渗透系数与临界水 力梯度之间的关系。

1 试验方案设计

1.1 试验土料

试验土料取3种:泥岩颗粒、卵石颗粒及卵石颗粒破碎料见图1。泥岩取自重庆三叠系上统须家河组地层,弱风化,紫红色,泥岩颗粒料棱角分明;卵石取自枯水期的河滩中,呈

收稿日期: 2013-10-30 修回日期: 2014-02-10 网络出版时间: 2014-06-11

• 102 • 试验研究

网络出版地址: http://www.cnki.net/kcms/doi/10.13476/j.cnki.nsbdqk.2014.04.001.html 基金项目:国家"十二五"科技支撑计划课题(2012BAB05B04);重庆交通大学研究生教育创新基金资助项目(2011(上)第06号) 作者简介:邱珍锋(1988),男,江西信丰人,博士研究生,主要从事水利工程方面的研究。Email:qiuzhenfeng3012@163.com

球状、椭球状;将卵石破碎之后的颗粒作为卵石破碎颗粒料, 其形状特性介于卵石与棱角分明的泥岩颗粒料。

试验时,对3种粗粒料分别拟定一种颗粒级配见图2。 各级配均属级配良好的土体级配,不均匀系数和曲率系数均 满足 *Cu*≥5,1< *Cc*<3的要求。

Fig. 2 Gradation curves of test soil samples

1.2 试验方案

孔隙介质的渗透特性与颗粒的级配、形状及其间的孔隙 结构分布和组成成分等密切相关^[78]。本试验只分析颗粒形 状、干密度及级配三种因素对渗透特性的影响, 拟定干密度 为 1. 90 g/ cm³、1.95 g/ cm³、2.00 g/ cm³ 三种水平见表 1。正 交试验方案设计见表 2, 另设计 2 组颗粒形状对比分析试验。

表1 影响因素设计

	Table 1	Factors and le	evels
水亚		因素	
小丁	形状	级配	干密度/(g• cm ⁻³)
1	卵石	JP1	1.90
2	破碎卵石	JP2	1.95
3	泥岩	JP3	2.00

2 试验方法

2.1 仪器介绍

试验仪器采用自制的常水头渗透仪^[13] 见图 3。为了便于 击实,仪器设计为长方体,试样尺寸为 200 mm× 200 mm× 400 mm。试验用水是水温高于室温 3 ℃~4 ℃的脱气水;饱和 控制水头差不大于 2 cm,即常水头条件,保证试样结构不会 在饱和过程遭受破坏。仪器采用"0"型密封圈、橡胶垫以及 螺栓止水,上盖、下盖及前盖可拆卸,并采用测压管和孔压传 感器实时监测土样中的孔隙压力,通过数据采集系统记录和 保存数据。试验过程中采用常水头和氮气加压的两种方式 控制水头,并配备高精度加压控制阀,前部分采用不同高度 放置大水桶控制常水头,且保证水桶内水面保持不变。

	18 2		四月来	
	Table 2 Tes	st scheme of	orthogonal tes	sts
立 政护卫		夕沂		
<u> </u>	形状	级配	干密度	
A 1	1	1	1	
A 2	1	2	2	
A 3	1	3	3	
A4	2	1	2	
A 5	2	2	3	正交试验
A 6	2	3	1	
Α7	3	1	3	
A 8	3	2	1	
A 9	3	3	2	
B10	1	2	1	形状对
B11	2	2	1	比试验

エカギぬナ安

± -

图 3 试验仪器 Fig. 3 Test instruments

2.2 试验步骤

(1)制样。按拟定试验方案中的级配及干密度进行取样,制样含水率控制为8%,搅拌均匀并闷料12h以上。将准备好的土料分成三等份,逐层填入竖立放置的仪器中,击实至预定高度并刨毛。

(2) 试样饱和。制样完成后, 拧紧螺栓, 采用常水头法进行饱和, 保证水头差不大于 2 cm, 直至出水管处有水连续流出。

(3)测试。分级加压测试,并同时进行人工读取测压管 数据和计算机采集孔压数据,直至试样破坏。

3 试验结果及分析

3.1 试验结果

试验结束后, 需对试验结果进行温度修正, 最终得到标准温度(20℃)下的渗透系数 k_{20} , 见表 3。

3.2 正交试验结果分析

对正交试验结果进行极差分析见表4和方差分析见表 5。极差越大代表该因素对整体结果的贡献越大^[7],由表4 可知,级配对粗颗粒土料的渗透系数的影响最大,颗粒的形 状及干密度对渗透系数的影响相对较小,且两者的贡献区别 并不明显。75%和50%保证率的F分布临界值分别为3.0 和1.0,从方差分析看出颗粒形状试验的的保证率未达到 50%,结果并不理想,可能存在试验误差,试验误差产生的原 因较多,其中,试验中饱和过程的控制可能是产生误差的主 要原因。如果试样中的孔隙气泡未全面排除,造成空隙堵塞,

Table 3 Test results							
试验编号	$k_{\rm T} / (10^2 {\rm cm} {}^{\bullet} {\rm s}^{-1})$	温度 T/ ℃	温度修正系数 凡/ N20	$k_{20} / (10^{2} \text{ cm} \cdot \text{ s}^{-1})$	临界坡降 icr		
A 1	0.770	10.6	1.275	0. 982	1. 040		
A 2	23.650	9.7	1.308	30. 929	0. 204		
A 3	3.770	11.2	1.254	4. 727	0. 315		
A4	62.000	10.0	1.297	80. 414	0. 094		
A 5	3.740	12.1	1.224	4. 577	0. 396		
A 6	1.840	12.0	1.227	2. 258	0. 579		
Α7	9.110	10.0	1.297	11.816	0. 102		
A 8	0.870	9.8	1.304	1. 135	1. 225		
A9	0.160	9.8	1.304	0. 209	1. 923		
B10	8.740	11.2	1.254	10. 958	0. 113		
B11	6. 390	12.1	1.224	7.820	0. 227		

表 3 试验结果

渗透通道不畅,试验结果受到显著的影响,正因如此,为了分析颗粒形状对渗透特性的影响,另加了两组对比分析试验 B10、B11。其余两组水平试验结果保证率基本符合要求,具 有一定的代表性,级配试验结果可以看出,误差基本是由于 水平差异引起的,因而,认为级配对渗透性的影响最大是可 信的。

~ .	

Гable 4	Range	an alys is
---------	-------	------------

实验		因	素		渗透系数	日長		极	值		
编号	形状	级配	干密度	空列	$k_{20}/(\text{cm} \cdot \vec{s}^1)$	日仰	形状	级配	干密度	空列	
A 1	1	1	1	1	0.982	K_{j1}	36.64	93.21	4.37	5.77	
A 2	1	2	2	2	30.929	K_{j2}	87.25	36.64	111.55	45.00	
A 3	1	3	3	3	4.727	K_{j3}	13.16	7.19	21.12	86.28	
A4	2	1	2	3	80.414	\overline{K}_{j1}	12.21	31.07	1.46	1.92	K = 137.05
A 5	2	2	3	1	4. 577	\overline{K}_{j2}	29.08	12.21	37.18	15.00	$P=2\ 080.\ 83$ $Q=7\ 613.\ 34$
A6	2	3	1	2	2.258	\overline{K}_{j3}	4.39	2.40	7.04	28.76	t
Α7	3	1	3	2	11.816	Q_j	3 042. 62	3 360.91	4 303.02	3 167. 33	
A 8	3	2	1	3	1.135	S_J^2	955.77	1 274.07	2 216. 17	1 080. 48	
A9	3	3	2	1	0.209	极差	7.83	28.67	5.58	26.84	$ST^2 = 5$ 526. 49

(附:K_{j1}表示 j列水平 1 试验值之和, K_{jt}表示对应K_{j1}的均值, S₁?表示 j列离差平方和, ST² 总离差平方和)

表 5 方差分析表

Table 5 Variance analysis

方差	来源	离差平方和	自由度	均方差	<i>F</i> 值	F临界值
形	状	955.77	2	477.89	0.88	
级	配	1 274. 07	2	637.03	1.18	E (2.2) 2
干部	渡	2 216. 17	2	1 108.09	2.05	$F_{0.25}(2,2) = 3$ $F_{0.25}(2,2) = 1$
误	差	1 080. 48	2	540.24		$- r_0 5(2, 2) = 1$
总	和	5 526. 49	8			

3.3 颗粒形状试验

颗粒形状的描述方法比较多,且学者们意见尚不统 一^[1]。范淑果等^{9]}从机械零件的角度出发,分析了圆度误差 中的几种描述方式的差异,认为最小外接圆法对评定零件的 形状是比较合适的;卓兴仁等^[10]认为这几种方式应采用统 计的方法确定最终的结果,刘清秉等^[11-12]计算了100个颗粒 样本的球形度,将均值和统计期望作为该样本的球形度,以 此来分析颗粒形状与力学强度指标等的关系,得到较为理想 的效果。为此,笔者通过对每组粒径颗粒取50个试样颗粒 进行拍照,经图片处理,得出颗粒最大内切圆直径 *d*₁ 及最小 外接圆直径 *d*₂,球形度定义为ξ-*d*₁/*d*₂ 的值,将每组粒径的 均值按级配中的颗粒百分含量分配再加权,最终确定该种颗 粒的球形度。根据球形度的定义,标准圆的球形度ξ为1,颗 粒的球形度均ξ≤1;棱角越分明、越不规则的颗粒球形度越 小。试验中的几种颗粒球形度结果见表6。

表6 颗粒形状量化

	Table 6 Qu	antification of particles	h ape
形状	球形度	$k_{20}/(10^2 \text{ cm} \cdot \text{s}^{-1})$	临界坡降 i _{cr}
卵石	0.678	10.958	0.113
卵石破碎	0.606	7.820	0. 227
泥岩	0.574	1.135	1.225

表 3 中的对比试验 B10、B11、A8 分别代表了颗粒级配 为 JP2、干密度为 1.90 g/ cm³的卵石、卵石破碎料、泥岩颗粒 料的试验,渗透系数结果分别为 10.958×10² cm/s、7.820× 10² cm/s、0.299×10² cm/s。从表 6 中可以看出,从卵石、卵 石破碎到泥岩,球形度逐渐减小,渗透系数呈减小的趋势;临 界坡降随着球形度的减小而增大。分析认为,涉水颗粒表面 形成一层水膜,水膜的吸附作用比较大,以致渗流孔隙相对 减小。卵石比较圆润,泥岩棱角分明,相同体积下泥岩比卵 石的比表面积大,导致泥岩颗粒料渗流通道小,渗透系数小;

• 104 • 试验研究

临界坡降是指大量颗粒跳动时的水力坡降,圆润的卵石颗粒 之间的接触较小,粗糙程度小^[11],对移动颗粒的阻碍小,使得 临界坡降值也小;从孔隙直径的角度上,卵石颗粒料由于比表 面积小形成孔隙大,渗透阻力小,导致其临界坡降较小。

孔隙介质的渗透特性与孔隙系统大小、排列、接触方式 等关系密切,颗粒级配只是宏观上描述颗粒介质的某些统计 特征^[1]。细观层面上,颗粒的形状、粗糙度及之间的接触等 使得颗粒材料的力学机理更加复杂。笔者采用球形度的概 念仅从卵石、卵石破碎料、泥岩颗粒料三者之间的颗粒形状 对渗透特性的影响进行分析,得出球形度越大的颗粒渗透系 数越大的规律,与周中等^[78]的研究成果一致;通过正交试验 的分析,发现颗粒级配对渗透系数的影响比干密度和颗粒形 状大,干密度与颗粒形状对渗透系数的影响相差不大,而邱 贤德等^[14]5]在堆石体渗透特性的研究中也得出相应结论。

3.4 渗透特性分析

孔隙介质的渗透系数、临界坡降都与材料本身属性有关,其中渗透系数的测试简单,而填土工程材料的临界水力梯度难于测定,但其对许多渗流问题分析更有意义。因此笔者尝试建立以渗透系数来描述坡降的公式,并与朱崇辉^[3]、刘黎^[2]的试验成果进行对比分析见图 4。

Fig. 4 Permeability property

从图 4 中可以得出渗透系数 *k* 与临界水力梯度 *i_a*之间的对数关系, *R²*为 0.76, 拟合公式为:

(1)

 $i_{g} = 1.06 - 0.34 \ln(k - 0.05)$

从公式(1)和图 4 可以看出,临界水力梯度随着渗透系数的增大而非线性递减,渗透系数 k 从 0.11×10² cm/s 增 大到 4.45×10² cm/s 的过程中,临界水力梯度递减较快;随 后随着渗透系数的增大而呈现缓慢递减过程。

周中等^{[7-8} 建立了颗粒组成特征与渗透系数之间的关 系,认为渗透系数与级配等效粒径、曲率系数等成正比关系; 邱贤德等¹⁴⁻¹⁹ 提出了渗透系数、临界水力梯度与粗颗粒含量 之间的关系,认为渗透系数与粗颗粒含量呈负指数关系,临 界水力梯度与其呈指数关系,这些结论的前提是渗透系数、 临界坡降等是材料的本质属性,是相互联系的。因而,笔者 从试验结果和前人研究成果中总结了渗透系数与临界水力 梯度之间的关系式,但该公式的分析介于渗透系数在0.1~ 0.13 cm/s范围,因此,具有一定的缺陷性。

4 结论

通过试验研究,分析了渗透特性与颗粒级配、形状及干

密度的关系,得出以下结论。

(1)粗粒土的渗透系数与土体颗粒级配、颗粒形状和干密度等密切相关,其中,颗粒级配对渗透系数的影响最大;渗透系数随着颗粒球形度的增大而增大;

(2) 渗透系数在一定范围内与临界水力梯度之间的非线 性相关性明显,可用渗透系数估计临界水力梯度的大小。由 于本试验成本大,得到的样本不多,因此更深入的研究还需 要增加实验样本。

参考文献(References):

- 张家发, 焦赳赳. 颗粒形状对多孔介质孔隙特征和渗流规律影响研究的探讨[J]. 长江科学院院报. 2011, 28(3): 39 44. (ZHANG Jiar fa, JIAO Jiar jiu. Influence of Grain Shape on Characteristics of Pores and Seepage in Porous M edia[J]. Journal of Yangtze River Scientific Reseach Institute. 2011, 28(3): 39 44. (in Chinese))
- [2] 刘黎. 粗粒料渗透特性及渗透规律试验研究[D]. 成都:四川大 学, 2006. (LIU Li. Testing Study on Seepage Property and Seepage Law of the Coarse Grain[D]. Chendu: Sichuan University, 2006. (in Chinese))
- [3] 朱崇辉. 粗粒土的渗透特性研究[D]. 杨凌: 西北农林科技大学, 2006. (ZHU Chong hui. Study on the Coarse grained Soil Permeability Characteristic [D]. Yangling: Northwest Agriculture and Forestry University. 2006. (in Chinese))
- [4] 黄先伍, 唐平, 缪协兴, 等. 破碎砂 岩渗透特 性与孔隙 率关系的 试验研究[J]. 岩土 力学, 2005, 26(09): 1385 1388. (HUANG Xiarr wu, TANG Ping, MIAO Xie xing, et al. Testing Study on Seepage Properties of Broken Sandstone[J]. Rock and Soil Me chanics, 2005, 26(09): 1385-1388. (in Chinese))
- [5] 马占国, 缪协兴, 李兴华, 等. 破碎页岩 渗透特性[J]. 采矿与安全工程学报, 2007, 24(03): 260 264. (MA Zhan guo, MIAO Xie xing, LI Xing hua, et al. Perm eability of Broken Shale[J]. Journal of Mining & Safety Engineering, 2007, 24(03): 260 264. (in Chinese))
- [6] 唐军峰,徐国元,唐雪梅,等. 坝基破碎带岩体渗透特性试验研究[J]. 湖南科技大学学报(自然科学版), 2010, 25(02):4044. (TANG Jurr feng, XU Guoryuan, TANG Xuormei, et al. Experimental Study of Seepage Character of Fractured Belt in Correctete Gravity Dam Foundation[J]. Journal of Hunan University of Science& Technology (Natural Science Edition), 2010, 25 (02):4044. (in Chinese))
- [7] 周中,傅鹤林,刘宝琛,等. 土石混合体渗透性能的正交试验研究[J].岩土工程学报,2006,28(9):11341138.(ZHOU Zhong, FU Helin,LIU Baσ chen, et al. Orthogonal Tests on Permeæ bility of Soitrock mixture[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9):11341138.(in Chinese))
- [8] 周中,傅鹤林,刘宝琛,等.土石混合体渗透性能的试验研究 [J].湖南大学学报(自然科学版),2006,33(6):2528.(ZHOU Zhong, FU Helin, LIU Baochen, et al. Experiment Study of the Permeability of Soil rock mixture[J]. Journal of Hunan University(Natural Sciences).2006,33(6):2528.(in Chinese))
- [9] 范淑果,郝宏伟,杜皓.选择圆度误差评定方法的体会[J]. 计量 与测试技术, 2009 (10): 28 30. (FAN Shurguo, HAO Hong wei, DU Hao. Impressions on Choosing Evaluating Method of

试验研究 • 105 •

Roundness Error[J]. M easurement and Testing, 2009(10): 28 30. (in Chinese))

- [10] 卓兴仁,刘焕文,王永波,等. 圆度误差4种评定方法评定结果 关系的研究[J].北京工业大学学报,1996,22(2):11F114.
 (ZHOU Xing-ren, LIU Huarr wen, WANG Yong bo, et al. The Relationship of the Different Verifying Results of Circur larity Deviation Through Four Different Ways[J].Journal of Beijing Polytechnic University, 1996, 22(2):11F114. (in Chr nese))
- [11] 刘清秉,项伟, M. Budhu,等.颗粒形状对砂土抗剪强度及桩端 阻力影响机制试验研究[J]. 岩石力学与工程学报, 2011, 30
 (2):400 410. (LIU Qing bing, XIANG Wei, M. Budhu, et al. Experimental Study of Effect of Particle Shapes on Shear Strength of Sand and Tip Resistance of Driven Piles[J]. Chrinese Journal of Rock Mechanics and Engineering, 2011, 30
 (2):400 410. (in Chinese))
- [12] 刘清秉, 伟项, B. M. Lehane, 等. 砂土颗粒形状量化及其对力
 学指标的影响分析[J]. 岩土力学, 2011, 32(z1): 190-197.
 (LIU Qing-bing, XIA NG Wei, B. M. Lehane, et al. Study of

Particle Shape Quantification and Effect on Mechanical Property of Sand[J]. Rock and Soil Mechanics, 2011, 32(z1): 190 197. (in Chinese))

- [13] 邱珍锋. 砂泥岩混合料各向异性渗透特性试验研究[D]. 重庆: 重庆交通大学, 2013. (QIU Zhen feng. Experimental Study on Anisotropic Permeability Characteristics of Sandstone mudstone Particle Mixture[D]. Chongqing: Chongqing Jiaotong University, 2013. (in Chinese))
- [14] 邱贤德, 阎宗岭, 刘立, 等. 堆石体粒径特征对其渗透性的影响
 [J]. 岩土力学, 2004, 25(6): 950-954. (QIU Xiarr de, YAN Zong ling, LIU Li, et al. Effect of Particle size Characteristic on the Seepage Property of Rockfill[J]. Rock and Soil Me chanic, 2004, 25(6): 950-954. (in Chinese))
- [15] 邱贤德, 阎宗岭, 姚本军, 等. 堆石体渗透特性的试验研究[J].
 四川大学 学报(工程科 学版), 2003, 35(2):69.(QIU Xiar de, YAN Zong ling, YAO Berr jun, et al. Effect of Particle size Characteristic on the Seepage Property of Rockfill[J]. Journal of Sichuan University (Engineering Science Edition), 2003, 35 (2):69.(in Chinese))

(上接第71页)

参考文献(References):

- [1] 漯河市澧河改道提前入沙河工程可行性研究报告[R].河南省 水利勘测设计研究有限公司, 2013. (Feasibility Research Report of Diverted the Flood of Lihe River into Shahe River in Advance Project in LuoHe[R]. Survey, Design & Research Co., LTD of Water Conservancy of Henan, 2010. (in Chinese))
- [2] 漯河市澧河改道提前入沙河工程模型试验研究[R]. 天津大学水力学所,河南省水利勘测设计研究有限公司,2013.(Model Testing Study on Diverted the flood of Lihe River into Shahe River in advance Project in LuoHe[R]. Hydraulics Institute of Tianjin University, Survey, Design & Research Co., LTD of Water Conservancy of Henan, 2010.(in Chinese))
- [3] 刘伟,和宛琳,刘晓琴. 漯河市沙北地区防洪工程方案研究[J]. 河南水利与南水北调, 2012, (17): 32 33. (LIU Wei, HE Warr lin, LIU Xiao qin. Flood Control Scheme Research of Area North of ShaHe of the City of Luohe, Henan Water Resources & South to North Water Diversion, 2012, (17): 32 33. (in Chinese))
- [4] 季益柱,丁全林,王玲玲,等.三峡水库一维水动力数值模拟及 可视化研究[J].水利水电技术,2012,43 (11):21-24.(JI Yi zhu, DING Quarr lin, WANG Ling ling, et al. 1-D Hydrodynamic Numerical Simulation of Three Gorges Reservoir and its Visualization Study[J]. Water Resources and Hydropower Engineering, 2012,11(43):21-24.(in Chinese))

- [5] J.M. Dias, M. C. Sousa, X. Bertin et al. Numerical Modeling of the Impact of the Ancao Inlet Relocation (Ria Formosa, Portugal) [J]. Environmental Modelling & Software, 2009, 24(6): 711725.
- [6] 王延贵, 胡春宏, 朱毕生. 模型沙起动流速公式的研究[J]. 水利 学报, 2007, 38(5): 518-523. (WANG Yangui, HU Chunhong, ZHU Bisheng. Study on Formula of Incipient Velocity of Sedir ment in Model Test[J]. Journal of Hydraulic Engineering, 2007, 38(5): 518-523. (in Chinese))
- [7] 王玉海, 蒋卫国, 王艳红. 冲刷物 理模型 试验 的比 尺效 应研究
 [J]. 泥沙研究, 2012, (03): 3F 34. (WANG Yurhai, JIANG Werguo, WANG Yarhong. Study of Scale Effect in Scour Physicalmodel Experiments. Journal of Sediment Research, 2012, (03): 3F 34. (in Chinese))
- [8] 水工(常规)模型试验规程SL 155 2012[R].中华人民共和国水 利部.(Test Regulation for Normal Hydraulic Model, SL 155 2012[R].The Ministry of Water Resources of the People's Re public of China)
- [9] 河工模型试验规程 SL 99 2012[R]. 中华人民共和国水利部.
 (Test Regulation for Model River, SL 99 2012[R]. The Ministry of Water Resources of the People's Republic of China)
- [10] 河流泥沙颗粒分析规程 SL42 2010[R].中华人民共和国水利部.(Technical Standard for Determination of Sediment Particle Size in open Channels, SL42-2010[R]. The Ministry of Water Resources of the People's Republic of China)

• 106 • 试 验 研 究