DOI: 10.13476/j. cnki. nsbdqk. 2015.04.044

不同工况条件下双泉水库溢洪道衬砌裂缝分析

胡良明1,孙宝成1,张 宾2

(1. 郑州大学 水利与环境学院,郑州 450001; 2. 郑州市水利建筑勘测设计院,郑州 450006)

摘要:随着混凝土在工程中的广泛应用,其裂缝问题也越来越受到人们的重视,由于施工或其它外界因素造成的裂缝,不仅影响结构的美观,而且由于裂缝造成抗渗性能的下降,引起漏水,还会影响结构的正常使用功能。以安阳县 双泉水库溢洪道混凝土衬砌为工程实例,建立了基于 ANSYS 的有限元模型,通过施加不同的工况,分析其温度场、应力场的变化规律,研究了混凝土衬砌裂缝产生的原因及裂缝产生的初始位置,并且提出了对混凝土温度应力控制的措施。

关键词: 混凝土; 衬砌; 裂缝; 温度场; 应力场; 温度应力; 计算工况

中图分类号: TU 5 28.2 文献标志码: A 文章编号: 1672-1683(2015) 04 0808-05

Research of the spillway lining cracks of Shuangquan Reservoir under different working conditions

HU Liang-ming¹, SUN Bao cheng¹, ZH ANG Bin²

(1. College of Water Conservancy & Engineering, Zhengzhou University, Zhengzhou 450001, China;

2. Zhengzhou Institute of Design and Surveying for Water Conservancy, Zhengzhou 450006, China)

Abstract: With the wide application of concrete in engineering, the crack problem has received more attention. Cracks are usually caused by construction or other external factors, which not only affect the aesthetics of structure, but also affect the structure function because cracks can decrease the permeability and then induce leaking. In this paper, the spillway concrete lining of Shuar gquan Reservoir in Anyang County was used as a case study. The finite element model was developed using ANSYS to analyze the variar tion rules of temperature and stress fields under different working conditions, and to investigate the causes of cracks in the concrete liming and initial position of cracks. The measures for temperature and stress control of concrete were proposed.

Key words: concrete; lining; crack; temperature field; stress field; temperature stress; working condition

混凝土材料是建筑结构工程中应用非常广泛的一种建 筑材料。混凝土开裂的原因很复杂,混凝土结构的裂缝,不 仅影响美观,给人造成心理上的压力,还会削弱结构承载能 力,同时产生的裂缝会加速混凝土的碳化,并降低混凝土抵 抗各种侵蚀性介质的耐腐蚀性能,从而影响结构的正常使 用,缩短了结构的使用寿命^[1]。

溢洪道是用来排放超过水库容纳量的过多水量,从而防 护大坝及其它结构的安全。溢洪道常用的衬砌材料是混凝土 或钢筋混凝土,在现实工程中,由于混凝土结构的诸多特点及 施工因素,还是会产生一些裂缝,如何避免溢洪道衬砌产生裂 缝是一个很值得研究的问题。因此,根据原型观测资料开展 衬砌裂缝分析是非常必要的。一方面对已建衬砌可以依此来 更好地评价衬砌的安全度、验证设计理论;另一方面为混凝土 衬砌的设计及施工优化提供参考依据。本文以安阳县双泉水 库溢洪道混凝土衬砌为工程实例,建立了基于 ANSYS 的有限 元模型,通过施加不同的工况,分析其温度场、应力场的变化 规律,研究了混凝土衬砌裂缝产生的原因及裂缝产生的初始 位置,并且提出了对混凝土温度应力控制的措施。

1 混凝土衬砌模型建立与计算工况

本文在双泉水库溢洪道混凝土衬砌基础上建立基于 ANSYS的有限元模型,对复杂条件下的混凝土衬砌裂缝进 行分析研究。

1.1 ANSYS 热分析简介

ANSYS 热分析基于能量守恒原理的热平衡方程,可用 于获取整个系统或单一组件的温度分布情况及其热物理参 数,如热量的获取或损失、热梯度、热流密度(热通量)、热应 力、相变等。

• 808 • 探讨与交流

收稿日期: 2014-10-15 修回日期: 2015-04-29 网络出版时间: 2015-07-23

网络出版地址: http://www.cnki.net/kcms/detail/13.1334.TV.20150723.2021.020.html 作者简介:胡良明(1963),男,河南信阳人,教授,主要从事水工结构工程数值分析与优化设计方面研究。E-mail:252282995@qq.com 通讯作者:孙宝成(1990),男,吉林靖宇人,主要从事水工结构工程数值分析与优化设计。E-mail:252282995@qq.com

1.2 工程概况

双泉水库是河南省安阳市安阳县境内的一座水库,位于 海河流域恒河支流粉红河上,建于1958年。水库枢纽工程主 要由大坝、溢洪道、输水洞和泄洪洞四部分组成,由于溢洪道 基岩风化较严重,槽底和边坡为风化岩石和黏土共存的地质 条件,不满足抗冲要求,故对溢洪道进行重新设计修砌。溢洪 道边坡采用 C25F150厚30 cm 混凝土衬砌,并配 № 级200 双向 钢筋网作为构造筋,钢筋保护层厚度50 mm,浇筑采用滑膜通 仓的方法连续浇筑,以增强衬砌与岩石边坡的结合,浇筑的混 凝土长10 m,宽7~9 m,边施工边养护,养护期为28 d。

施工结束后发现溢洪道边坡混凝土衬砌黄砂岩基础段 出现裂缝,施工单位针对此问题专门组织技术小组对裂缝进 行了调查统计,调查结果见表1。

	表	₹1	混	凝土裂	缝ì	周查统计	•
T ab.	1	Sur	vev	statistic	s of	concrete	crack

		•			
序号	桩号	浇筑日期	平均气温 (℃)	数量 /条	缝长 /m
1	左岸 0+ 080	2009. 4. 18	15	1	7.6
2	右岸进水口3.37m	2009. 4. 23	15	1	3.97
3	右岸进水口 2.4m	2009. 5. 24	15	1	2
4	左岸 0+ 185	2009. 4. 30	18	1	0.4
5	右岸 0+ 600	2009. 5. 18	22.5	3	3.65
6	左岸 0+ 580	2009. 5. 19	22.5	3	7.6
7	左岸 0+ 560	2009. 5. 20	21	2	3
8	左岸 0+ 520	2009. 5. 21	23	1	6.5

根据调查,裂缝主要集中在左岸,地质情况为黄砂岩的 部位,大部分裂缝为竖向裂缝,个别坡段还出现 1~2条不规则的水平裂缝,竖向裂缝长度为 0.4~8.2 m 不等。所有裂 缝宽度均在 0.25 mm 以下。

1.3 混凝土模型的建立

根据双泉水库溢洪道的实际尺寸,钢筋混凝土模型采用 等效模量方法^[3],建立基础和混凝土衬砌的三维实体模型, 由于六面体单元一般比四面体单元计算稳定且收敛性好^[3], 在温度场分析时候采用三维实体单元 Solid 70,在应力场分 析时转化为 Solid45 单元。采用 ANSYS 中体扫掠方法划分 有限单元网格。

双泉水库溢洪道尺寸为,溢洪道底部宽 30 m,边坡坡度 为1:1,沿水流方向每 10 m 设一道伸缩缝,两岸边坡衬砌的 垂直高度为 5 m,厚度为 30 cm,其余部分没有衬砌。 由于溢洪道的对称性,且裂缝均产生于边坡衬砌,故本 文只考虑能够给衬砌产生约束的部分底板及衬砌和基础,并 不对整个溢洪道做分析研究,建模并划分网格见图1。网格 划分后共有30600个六面体单元,35577个节点。

图 1 溢洪道有限元模型 Fig. 1 The finite element model of spillway

1.4 计算工况

溢洪道混凝土衬砌从开始施工至工程运行阶段,会因外 界各种因素的影响而开裂。本文考虑外界温度、混凝土浇筑 温度、昼夜温差、混凝土等级、地质条件对混凝土衬砌温度、 应力及裂缝的影响,计算工况如下。

工况N·:外界平均温度分别为 10 ℃、15 ℃、20 ℃, 混凝 土浇筑温度为 20 ℃, 昼夜温差为 10 ℃, 混凝土等级为 C25, 基础为黄砂岩。

工况⁽): 混凝土浇筑温度分别为 15 ℃、20 ℃、25 ℃,外 界平均气温为 15 ℃, 昼夜温差为 10 ℃, 混凝土等级为 C25, 基础为黄砂岩。

工况⁶:昼夜温差变化分别为 10 ℃、15 ℃、20 ℃,外界 平均气温为 15 ℃,混凝土浇筑温度为 20 ℃,混凝土等级为 C25,基础为黄砂岩。

工况⁰: 混凝土等级分别为 C20、C25、C30, 外界平均气 温为 15 ℃, 混凝土浇筑温度为 20 ℃, 昼夜温差为 10 ℃。

工况Õ:地质条件类型分别为岩石、黄黏土、砂土,外界 平均气温为15℃,混凝土浇筑温度为20℃,昼夜温差为10 ℃,混凝土等级为C25。

1.5 某些参数的取值

(1) 气温。由于实际工程中没有实测的温度资料,故参考安阳市多年实测气象资料,见表2,确定施工月份的气温变化曲线,另外假定了在其它温度下施工时的气温变化曲线。

(2) 混凝土等级。不同等级的混凝土的各性能参数见表 3。

Tab. 2Average climate data in Anyang City(1971-2000)													
月份	1月	2月	3月	4 月	5 月	6月	7月	8月	9月	10 月	11 月	12 月	全年
平均高温(℃)	4.4	7.9	13.8	21.7	27.1	31.8	31.7	30.4	26.8	21.2	13.0	6.6	19.7
平均低温(℃)	- 5.1	- 2.4	3.0	10.0	15.1	20.1	22.7	21.6	16.3	9.9	2.5	- 3.0	9.2
日照时数/h	142.0	148.9	180.2	219.4	251.6	232.5	190.2	200.1	187.1	180. 2	152.8	140.3	2225.3
来源·中国气象局2010 年 6 月 2 日													

表 2 安阳市(1971年-2000年)气候平均数据

衣) 小四守级此威上的令	参数
--------------	----

Tab. 3 The parameters of different grades of concrete

			0		
混凝土等级	导热系数/(kJ・m ⁻¹ ・d ⁻¹ .℃ ⁻¹)	比热/(kJ• kg ⁻¹ • °C ⁻¹)	弹性模量/10 ¹⁰ Pa	轴心抗压强度/10 ⁶ Pa	轴心抗拉强度/10 ⁶ Pa
C20	254.4	0.9	2.55	10.0	1.1
C25	246.46	0. 91	2.8	12.5	1.3
C30	222	1.021	3.0	15.0	1.5

表 4	不同	基础	参数
-----	----	----	----

Tab. 4 Different basic parameters								
基础类型	黄砂岩	黄黏土	砂土					
导热系数/(KJ・m ⁻¹ ・d ¹ ・℃ ⁻¹)	246.46	86.4	172.8					
比热/(KJ• kg ⁻¹ • ℃ ⁻¹)	0. 91	2.3	1					
密度/(kg•m ⁻³)	2 400	1 500	2 050					
弹性模量/10 ¹⁰ Pa	3.0	2.0	2.5					
泊松比	0.35	0.25	0.3					
热膨胀系数/(1・℃-1)	1.0×10 ⁵	0.6×10 ⁻⁵	0.7×10 ⁵					

(5) 对流换热系数(也称表面放热系数)。对于混凝土和基础来说,均属于粗糙表面,由粗糙表面散热系数公式β=21.06+17.58v^{0.91},考虑到当地风速,取对流换热系数为1641.6 kJ/(m²・d・℃)。

2 温度场分析

要对混凝土衬砌进行应力分析,前提是得到各节点的温度⁴¹,为研究其温度场的变化规律,沿衬砌中心厚度方向取 6 点,由表及里分别为节点 421、4086、4085、4084、4083、1262,作为特征点进行分析研究。

外界温度变化从上午6时开始,到第二天6时。在AN-SYS中时间步长共为28.5d,子步长为0.1d,共有285步。 一天之内各时间点分别为6h、8.4h、10.8h、13.2h、15.6h、 18h、20.4h、22.8h、1.2h及3.6h。

当外界平均气温为 20 ℃、浇筑温度为 20 ℃、昼夜温差 为 10 ℃、混凝土等级为 C25、基础为黄砂岩时, 28.5 d 中的 前 3 天、后 2 天温度变化见图 3 和图 4。可直观看出, 各节点 的温度经过初始阶段上升后逐渐下降至稳定, 基本呈周期性 变化趋势, 且振幅(即温度变化范围)逐渐变小。

除了节点421直接与空气接触,其振幅保持稳定、略大 于外界气温变化(水泥水化热影响)且变化稍落后外,其它节 点振幅的温度变化并不和外界温度变化规律如此相近,由于 混凝土内部的水泥水化反应,致使混凝土内部温度升高,由 于溢洪道衬砌较薄,散热较快,故其影响程度在15d后并没 有外界温度变化所造成的影响大,所以混凝土衬砌的温度先 上升后下降,在后期基本上呈正弦规律变化。理论上各节点 每天同一时刻只与外界气温相关的温度值是一样的,故水泥

Fig. 3 Temperature change in the first three days

Fig. 4 Temperature change in the last two days

水化反应、外界热量交换及基础温度扩散造成的影响可以通 过每天同一时刻各节点温度的变化规律看出。

在同一时刻,越接近基础,各节点温度变化幅度越小,即 越接近平均温度。在每天同一时刻,根据温度的计算结果, 绘制各节点的温度变化规律,见图 5 和图 6。

图 5 6 时各节点的温度变化规律

• 810 • 探讨与交流

可以看出,6时内部节点温度相对较高,外界温度持续上升,使混凝土衬砌表面温度上升,而内部温度相对较低,至15时左右,表面温度上升至最高点,稍落后于外界气温的最高点,而内部温度的最高点则稍落后于表面温度。22.8时随着外界气温的降低,表面温度随之降低,内部温度由于延迟而较高。

在浇筑完成后,由水泥的水化反应,混凝土内部温度会 迅速上升,而混凝土衬砌较薄,由混凝土衬砌的散热作用,其 表面到基础的散热速率越来越小,表面散热快,温度在第1~ 2 d达到最大,表面较内部先达到最大值,表面节点第7~8 d 开始趋于稳定,内部节点至15 d 后趋于稳定,可见其温度变 化的延后性。其后的温度轻微上升则是由于基岩底部设置 边界条件为绝热边界造成的保温作用。

通过对不同工况下温度变化规律进行分析表明,外界温度的变化(包括平均气温及昼夜温差)对混凝土衬砌各节点温度有很大影响,混凝土等级次之,混凝土浇筑温度及基础 类型对各节点温度影响较小。

3 应力场变化规律及裂缝分析

欲得到混凝土衬砌的裂缝开裂情况,则需在温度场分析的基础上,对混凝土衬砌进行应力场分析。为研究其应力场的变化规律,沿衬砌中心厚度方向取 6 点,由表及里分别为节点 421、4086、4085、4084、4083、1262。

在相同条件下, 一天内各节点应力变化并不显著, 只是 以小幅度上下波动, 见图 7, 故只取某时刻的应力值进行分 析, 当外界平均气温为 20 ℃、浇筑温度为 20 ℃、昼夜温差为 10 ℃、混凝土等级为 C25、基础为黄砂岩时, 取出现最大应力 时刻的应力进行分析。

Fig. 7 Overall stress change rules of each node

可以看出,表面及衬砌混凝土与基础结合面应力变化较明显,呈先上升后下降的趋势,这时起主要作用的是基础的约束作用,最大拉应力产生的时间为第 2~3 d,和最大温度产生的时间并不一致,可知最大温度时并不一定为最大应力出现的时间。

3.1 沿特定路径的应力分布规律

由应力数据可以看出,其应力值非常小,这是由于混凝 土衬砌板中心部位并不是其应力最大的地方,要确定其应力 最大的位置及在此应力下的裂缝开裂位置,需要提取混凝土 衬砌有限元模型中其它位置的应力结果数据,为实现这一目 标,要用到 ANSYS 通用后处理中提供的路径映射技术,在 ANSYS 中沿顺溢洪道方向及其垂直方向在混凝土衬砌有限 元模型上设置路径,来研究应力在沿混凝土衬砌长、宽及厚度方向的变化规律。设置的路径见图8。

国 6 西江小志国 Fig. 8 Schematic diagram of path

设置的路径有:顺溢洪道方向 S1(混凝土衬砌表面)、 SD1(混凝土衬砌底部);垂直溢洪道方向 T1、TD1。混凝土 衬砌顺溢洪道方向长度为 10 m,垂直溢洪道方向上部长度 为 6.4 m,下部长度为 7 m。

当外界平均气温为 20 ℃、浇筑温度为 20 ℃、昼夜温差 为 10 ℃、混凝土等级为 C25、基础为黄砂岩时,取应力最大 时刻的应力分布情况见表 5。

	1	ab. 5 Stress	suistr	induction of each	i paui	1 a	
c		S1		S1	- 5	S1	
5	S 1	SD1	5	T1	- 5	T D1	
0. 00	79674.0	- 240 540.0	0. 00	5175.0	0.00	- 121 610.0	
1. 00	39393.0	179 300.0	0.64	7965.7	0.70	313 130.0	
2.00	4269.7	16 71 1. 0	1. 28	2851.6	1.40	65 393.0	
3. 00	1 5 27.7	8 820.7	1. 92	1823.6	2.10	17 262.0	
4. 00	- 128.7	7 751.4	2.56	1331.2	2.80	10 200.0	
5.00	1351.6	7 842.6	3. 20	1351.6	3.50	7 842.6	
6.00	- 128.7	7 751.4	3. 84	1366.0	4.20	8 146.2	
7.00	1527.7	8 820.7	4.48	600. 2	4.90	- 30 807.0	
8.00	4269.7	16 71 1. 0	5. 12	- 5278.5	5.60	- 259 560.0	
9.00	39393.0	179 300.0	5.76	42243.0	6.30	- 903 650.0	
10.00	79675.0	- 240 530.0	6.40	- 1157900.0	7.00	-2 027 600.0	

可以看出,在混凝土衬砌表面应力表现为拉应力,这是 由于混凝土为热的不良导体,内外散热不均匀,从而产生较 大的拉应力。在混凝土衬砌表面顺溢洪道方向两边出现拉 应力,底部同时出现拉压应力,拉应力为 0.3 MPa,压应力为 0.24 MPa;垂直于溢洪道方向在衬砌上部产生较小拉应力, 在混凝土衬砌与溢洪道底槽接触处附近则出现较大压应力, 大小为 4 MPa,均未超过 C25 极限强度,比较安全。

3.2 裂缝位置确定

通过加载不同工况下的各条路径变化情况做分析研究,确定其应力最大的位置及在此应力下的裂缝开裂位置,当工况0:在不同的昼夜温差变化下,根据应力数据绘制应力变化图,见图9和图10。可以看出,较大的昼夜温差会造成很大的应力增长,当昼夜温差在10℃、15℃时,顺溢洪道方向混凝土衬砌表面产生的拉应力分别为023MPa、1MPa,应力均在

Fig. 10 Stress distribution of T1(surface)

安全范围之内, 当昼夜温差达到 20 ℃时, 产生的拉应力为 2 4 MPa, 超过 C25 混凝土的极限抗拉强度(1 3 MPa), 底部 压应力为 0 9 MPa, 不会发生挤压破坏。垂直溢洪道方向, 15 ℃时衬砌表面产生的拉应力接近 1 MPa, 底部压应力为 3 1 MPa, 20 ℃时, 衬砌表面产生的拉应力最大为 2 3 MPa, 已超过 C25 混凝土抗拉极限强度。底部产生的压应力和 15 ℃时相近, 为 3 MPa。三种昼夜温差情况下压应力均未超过 混凝土的抗压极限强度。综上所述, 当昼夜温差达到 20 ℃ 时, 混凝土衬砌表面会有裂缝产生, 裂缝开裂初始位置位于 混凝土衬砌顺溢洪道方向距两边缘约 1 m 处及垂直于溢洪 道方向衬砌上部约 0 5 m 处。

故在施工过程中应该尽量减小昼夜温差,在混凝土表面 采用有效的养护措施,在混凝土表面覆盖保温材料,使得混凝 土表面的热扩散减弱,从而使得混凝土内外温差降低,保证混 凝土内部温度的均匀分布,从而有效降低混凝土最大拉应力。

4 结论

加载不同的工况得到了混凝土衬砌温度随时间的变化 规律,通过温度场进行分析发现,对混凝土衬砌温度场影响 较大的是外界气温,包括平均气温及昼夜温差,混凝土等级 次之,混凝土浇筑温度及基础类型对各节点温度影响较小。 混凝土衬砌较薄,外界温度对其影响很大,由于水泥水化热 作用及基础的保温作用,混凝土内部温度较高,混凝土衬砌 内部温度变化幅度及变化快慢自表面至基础依次变小。模 拟结果符合温度扩散规律。

对不同工况下应力场的变化规律进行了分析,得知昼夜 温差的大小对应力场影响最大,推出了裂缝最有可能产生的 位置,是位于混凝土衬砌顺溢洪道方向两边约1m处及垂直 于溢洪道方向衬砌上部约05m处,这与现实情况中裂缝发 生的位置相吻合。

在所有的防护措施中,除选用合适的混凝土等级,控制 混凝土浇筑温度及基础类型外,应特别注重昼夜温差的影 响,采用有效的养护手段,在混凝土表面覆盖保温材料,降低 混凝土内外温差,使混凝土内部的温度均匀分布,从而减少 裂缝的产生。

参考文献(References):

- [1] 邓进标, 邹志晖, 韩伯鲤. 水工混凝土建筑物裂缝分析及其处理
 [M]. 武汉: 武汉水利电力大学出版社, 1998. (DENG Jim biao, ZOU Zhi hui, HAN Bo li. Hydraulic concrete structure crack ar nalysis and processing [M]. Wuhan: wuhan university of hydraulic and electric engineering press, 1998. (in Chinese))
- [2] 孔丹丹, 赵颖华, 王萍, 等. 钢筋混凝土材料有限元分析中的等效模量方法[J]. 沈阳建筑大学学报:自然科学版, 2005, 21(3): 200 203. (KONG Darr dan, ZHAO Ying hua, WANG ping, et al. Equivalent modulus method in the finite element analysis of reinforced concrete material[J]. Journal of shenyang architectural university: natural science edition, 2005, 21(3): 200 203. (in Chinese))
- [3] 陆新征,江见鲸.利用 ANSYS Solid65 单元分析复杂应力条件 下的混凝土结构[J].建筑结构,2003,33(6):22-24.(LU Xim zheng, JIANG Jian jing. ANSYS Solid65 element analysis of concrete structures under complicated stress condition[J]. Journal of building structures, 2003(6):22-24.(in Chinese))
- [4] 李立峰. 基于 ANSYS 的混凝土水化热温度场读取方法[J].山 西建筑, 2007, 33(1): 74 75. (LI Lifeng. Read the concrete hydration heat temperature field based on ANSYS method[J]. Journal of shanxi architecture, 2007(1): 74 75.(in Chinese))
- [5] 朱伯芳.大体积混凝土温度应力与温度控制[M].北京:中国电力出版社, 1999. (ZHU Bofang. The mass concrete temperar ture stress and temperature control[M]. Beijing: China power pr ess, 1999(in Chinese))
- [6] Rogers, David F, Adams J A. Computer aided heat transfer ar nalysis[J]. McGraw-Hill, 1973.
- [7] Gardner N J. Effect of T emperature on the Early- age Properties of Type I, Type II, and Type III/ fly ash concretes with temperature[J]. A CI Materials Journal, 1990, 87(1).
- [8] Brooks J J, Al-Kaisi A F. Early strength development of Portland and slag cement concretes cured at elevated temperatures [J]. Materials Journal, 1990, 87(5): 503-507.
- [9] R. Springenschmid, R. Breitenb cher. Beurteilung der Rinergunganhand der Ri temperatur von jungem Beton bei Zwang [J]. Betorrund Stahlbetonbau, 1990, 85(2): 29 33.
- [10] Veen C V d. Theoretical and experimental determination of the crack width in reinforced concrete at very low temperatures[J]. H eron, 1990, 35(2).
- [11] Vecchio F J, Sato J A. Thermal gradient effects in reinforced corr crete frame structures [J]. A CI Structural Journal, 1990, 87(3).
- [12] RawiI R S A, Kheder G F. Control of cracking due to volume change in base restrained concrete members [J]. ACI Structural Journal, 1990, 87(4).

(上转第764页)

• 812 • 探讨与交流

量数据与 Google Map 中网络地图资源,应用 JavaScript、 JSP、AJAX 以及HTML5 等先进的网络界面技术,开发了北 京市南水北调实时水量调度系统。系统在建立时充分考虑 了用户需求,将操作界面及流程简化,使用者利用简单的界 面操作就可以进行管网调度模型计算。系统界面友好,操作 简单,功能齐全,可为南水北调水进京后的调度工作提供如 下技术支撑:(1)以管网工情实时监视为核心的管网调度的 数字化管理;(2)以不同工况下管网实时调度的仿真模拟为 基础的决策支持。

参考文献(References):

- [1] 王银堂,胡四一,周全林,等.南水北调中线工程水量优化调度研究[J].水科学进展,2001,12(1):72-80.(WANG Yirr tang, HU Sryi,ZHOU Quarr lin, et al. Optimal water operation for the Water Transfer Project from South to North (Middle Route)[J]. Advances in Water Science, 2001(1):72-80.(in Chinese))
- [2] 章燕喃,田富强,胡宏昌,齐子超.南水北调来水条件下北京市 多水源联合调度模型研究[J].水利学报,2014(7):844849.
 (ZHANG Yarr nan, TIAN Fur qiang, HU Hong chang etal. Joint operation model of multiple water sources in Beijing[J]. Journal of Hydraulic Engineering, 2014(7):844-849. (in Chinese))
- [3] 周潮洪,常守权.永定河实时调度系统的建立[J].水利学报,
 2003(8):101-104,110.(ZHOU Chaσhong, CHANG Shour quan. Establishment of real time flood dispatch system of Yongding River[J]. Journal of Hydraulic Engineering, 2003 (8):101-104,110.(in Chinese))
- [4] 陈炼钢,施勇,钱新,等. J2EE 耦合 GIS& FLEX 的淮河流域水 环境预警与管理系统研发[J].水力发电学报,2013,2:108113. (CHEN Liarr gang, SHI Yong, QIAN Xin. Et al. Water envirorr ment early warning and management system for Huai River basin based on J2EE coupling of GIS and FLEX[J]. Journal Of Hydroe lectric Engin eering, 2013, 2:108113. (in Chin ese))
- [5] 陈云华,曾碧,曾洪周. 基于 J2EE 与 ArcGIS 的 测绘成果管理 系统研究与实现[J]. 微电子 学与计算机, 2011, 28(1): 83 87. (CHEN Yur hua, ZENG Bi, ZENG Hong zhou. Research and implementation of surveying and mapping production manage ment system based on J2EE and ArcIMS[J]. Microelectronics & Computer, 2011, 28(1): 83 87. (in Chinese))

- [6] 江宽, 龚小鹏. Google API开发详解[M]. 北京: 电子工业出版 社, 2010. (JIANG Kuan, GONG Xiaopeng. Detailed explanar tion of google API development[M]. Beijing: Publishing House of Electronics Industry, 2010. (in Chinese))
- [7] 李垠, 左德霖, 侯建明, 等. 基于 Google Map 的地震综合信息服务系统构建研究[J]. 大地 测量 与地球动力 学, 2011, 31(S1): 118 121. (LI Yin, ZUO De lin, HOU Jiar ming, et al. Research on comprehensive earth quake information service system based on Google Map[J]. Journal of Geodesy and Geodynamics, 2011 (S1): 118 121. (in Chinese))
- [8] 程春田,申建建,武新宇,等.大规模水电站群短期优化调度方法⁰:应用软件系统[J].水利学报,2012,43(2):160167.
 (CHENG Churr tian, SHEN Jianr jian, WU Xirr yu. et al. Short term optimal operation methods of large scale hydropower plants IV. Decision support system [J]. Journal of Hydraulic Engineering, 2012, 43(2):160167. (in Chinese))
- [9] 王国利,彭勇,何斌,等.基于 B/S+ C/S 模式的防洪调度决策 支持系统研究及其应用[J].大连理工大学学报,2010(2):258
 263.(WANG Guorli, PENG Yong, HE Bin, et al. Study of B/S & C/ S based flood control decision making support system and its application[J]. Journal of Dalian University of Technology, 2010(2):258 263.(in Chinese))
- [10] 梁国华,李娜,彭勇,等.基于 Hibernate的辽河流域防洪调度系统[J].水利水电科技进展, 2008, 28(6): 62-65. (LIANG Guo hua, LI Na, PENG Yong, et al. Flood control system for Liaohe Basin based on the Hibernate framework[J]. Advances in Science and Technology of Water Resources, 2008, 28(6): 62-65. (in Chinese))
- [11] 彭勇,周惠成,梁国华.洪水预报调度软件的设计模式研究
 [J].哈尔滨工业大学学报,2009,41(9):179183.(PENG Yong,ZHOU Huircheng,LIANG Guσhua. Desgin pattern for the software of flood for ecast and operation[J]. Journal of Harbin Institute of Technology, 2009, 41(9):179183.(in Chrnese))
- [12] 程春田, 廖胜利, 武新宇, 等. 面向省级电网的跨流域水电站群发电优化 调度系统的关键技术实现[J]. 水利学报, 2010, 41
 (4):477-482. (CHENG Churr tian, LIAO Sheng-li, WU Xirr yu, et al. Key technologies to optimize operation system for large scale hydropower stations in provincial power grid[J]. Journal of Hydraulic Engineering, 2010, 41(4):477-482. (in Chinese))

(下接第812页)

- [13] Kheder G F, Rawi R S A, Dhahi J K A. Study of the behavior of volume change cracking in base restraint concrete walls[J]. ACI Materials Journal, 1994, 91(2).
- [14] 蔡建波.用杂交元求解有冷却水管的平面不稳定温度场[J]. 水利学报,1984(5):1825.(CAI Jiarbo.With hybrid element solving plane unstable tem perature field of cooling water pipe

 $\left[\ J \right]$. Journal of water conservancy, 1984(5):18 25. (in Chinese))

[15] 李菊根.有限元外推法及其在温度场计算中的应用[J].水电站设计,1993,9(2):36 36. (LI Jurgen. Finite element extrapolation method and its application in temperature field calcular tion[J]. Journal of hydroelectric power station design, 1993,9 (2):36 36. (in Chinese))

• 764 • 数字水利