

DOI: 10.13476/j.cnki.nsbdqk.2017.05.002

任旺, 徐国宾. 基于 GA- 灰色波形预测模型的白洋淀天然入淀水量[J]. 南水北调与水利科技, 2017, 15(5): 09-14, 49. REN Wang, XU Guo bin. Analysis on the natural flow into Baiyangdian Lake based on the GA grey wave forecasting model[J]. South to North Water Transfers and Water Science & Technology, 2017, 15(5): 09-14, 49. (in Chinese)

基于 GA-灰色波形预测模型的白洋淀天然入淀水量

任 旺1,2,徐国宾1

(1. 天津大学 水利工程仿真与安全国家重点实验室, 天津 300072; 2. 河北省水利水电第二勘测设计研究院, 石家庄 050021)

摘要. 白洋淀天然入淀水量在长期的时间序列上有着丰、枯水期交替演化的规律,灰色波形模型适用于这一规律发展趋势的研究。通过遗传算法(GA)对灰色一阶模型(GM(1,1))的迭代基值α与背景值系数β进行优化,利用遗传算法收敛效率高,选择范围广的优点,建立了以GA-GM(1,1)群为基础的GA-灰色波形模型,对白洋淀天然入淀水量趋势进行研究。最终得出结论:GA-灰色波形模型不仅在信息序列的拟合上明显优于传统灰色波形模型,且GA-灰色波形模型能更好的抓住信息序列发展特点,更为准确的预测白洋淀天然入淀水量演化规律。说明用GA-灰色波形模型进行白洋淀天然入淀水量研究是可行的,也为研究湖泊水资源量变化提供了一种新思路。

关键词: 天然水量预测; 遗传算法(GA); 灰色波形模型; GA-GM(1,1) 模型; 白洋淀

中图分类号: TV 213; TV 211 文献标识码: A 文章编号: 1672 1683(2017) 05 0009 06

Analysis on the natural flow into Baiyangdian Lake based on the GA-grey wave forecasting model

REN Wang^{1, 2} XU Guo bin¹

(1. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China; 2. The Second Design and Research Institute of Water Conservancy and Hydropower of Hebri Province, Shijiazhuang 050021, China)

Abstract: In terms of long time series, the natural flow into Baiyangdian Lake has a pattern of alternating between dry season and wet season. The grey wave forecasting model is suitable for studying the development trend of this pattern. We used the genetic algorithm (GA) to optimize the first order grey model (GM(1,1))' siterative basic value α and background value codfi cient β . Taking advantage of GA' scharacteristics of efficient convergence and broad selection range, we established the GA grey wave forecasting model based on the GA GM(1,1) grey models, and used it to study the trend of the natural flow into Baiyangdian Lake. It was concluded that the GA grey wave forecasting model is obviously superior to the traditional grey wave forecasting model not only in matching information sequences but also in finding the changing characteristics of the information sequences; thus it can better forecast the evolution of the natural flow into Baiyangdian Lake. This study has proved the feasibility of GA-grey wave forecasting model, and can provide a new thought to the research of the variation of water resources quantity of lakes.

Key words: natural water volume forecast; genetic algorithm (GA); grey wave forecasting model; GA-GM(1, 1) model; Baiyang-dian Lake

收稿日期: 2016-09-05 修回日期: 2017-02-17 网络出版时间: 2017-08-29

网络出版地址: http://kns.cnki.net/kcms/detail/13.1334.TV.20170829.1930.021.html

基金项目: 国家自然科学基金(51321065)

Fund: National Natural Science Foundation of China (51321065)

作者简介: 任 旺(1992-), 男, 河北石家庄人, 主要从事水生态评价及水动力数值模拟研究。 E m ail: 296103615@ qq. com 通讯作者: 徐国宾(1956-), 男, 河北石家庄人, 教授, 主要从事工程泥沙与工程水力学研究。 E m ail: x uguob@ sina. com

白洋淀天然入淀水量年际变化较大^[1],呈明显的枯水期、丰水期交替演化规律,研究白洋淀年天然入淀水量枯、丰水期变化规律对该地区生态环境保护和流域部门科学调水都有深远意义。

邓聚龙教授于20世纪80年代创立灰色系统理 论[2],该理论通过提炼灰色系统中的已知信息,找到 系统的演化规律。灰色波形模型建立在 GM (1,1) 模型群的基础上[3],多用于振荡序列的预测。而 GM(1,1)模型在建模参数的选取上还存在不足,近 年来国内外学者对灰色系统做了大量研究,国内学 者的研究主要以模型的优化改进为主[47],国外学者 的研究多集中于灰色系统的应用[89]。研究表明,影 响 GM(1,1) 模型精度的主要因素是迭代基值和背 景值系数。以往的优化多针对其中一点,而这两因 素微小的变动就会使预测结果产生偏移。统计数据 显示[10],河流天然径流量短期内有偶然性,但从长 期的水文资料来看呈周期变化。白洋淀的天然入淀 流量主要由入淀河流径流量决定,也有周期性变化 特征,长期的统计数据中蕴含着大量信息。本文利 用遗传算法收敛好,稳定高的特点同时对影响灰色 模型精度的两个影响因素寻优,建立 GA-灰色波形 模型探究 GA-GM(1,1) 优化群模型在波形预测中 的精度,分析白洋淀天然入淀水量趋势。

1 遗传算法优化的灰色波形模型

1.1 GA-GM(1,1)优化模型

GM(1,1)模型是应用最广泛的灰色预测模型^[11],它将灰量累加,增强了数据的规律性,将系统看成随时间变化的类指数函数,拟合函数预测未知数据。传统 GM(1,1)模型将迭代基值 α 指定为 $x^{(0)}(k)$,将背景值系数 β 指定为 0.5。研究表明^[45] 这样指定不合理,影响模型的拟合精度,使拟合序列产生偏移,应对这两个参数寻优。

遗传算法是一种选择进化算法^[12],模拟自然界物种选择和遗传的机理迭代寻优。文献^[5]中对背景值系数逐次叠加 0 001 再用最小二乘估计计算迭代基值固然可取,但过于机械,计算缓慢。研究发现当GM(1,1)信息序列数据过多时,背景值系数万分之一的变动都会对拟合精度造成很大影响。可利用遗传算法 优化 高效,参数选择范围广的优势与GM(1,1)结合,将GM(1,1)生成的拟合序列与信息序列总的相对误差作为适应度函数,以迭代基值 α与背景值系数β作为染色体。优化过程见图 1。

1.2 灰色波形模型建模机理

灰色波形模型是以GM(1,1)预测群为基础建

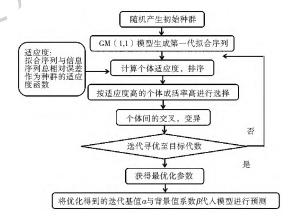


图 1 GA-GM(1,1)模型优化过程 Fig. 1 The optimization procedure of the model of GA-GM (1,1)

立的灰色模型,多用于呈类周期变化序列的趋势研

立的灰色模型,多用于呈类周期变化序列的趋势研究^[13]。其建模机理如下:信息序列为 X = (x(1), x(2), ..., x(n)),序列 X 的第 k 段折线图形为

 $x_k = x(k) + (t_k - k)[x(k+1) - x(k)]$ (1) 式中: x_k 表示在第k 段折线图形中的任意纵坐标; t_k 表示在第k 段折线图形中的任意横坐标。

记 X 的折线序列仍记为 X, 即 $X = \{x_k = x(k) + (t_k - k)[x(k+1) - x(k)], k = 1, ..., n-1\}$ 。取 X = 8 称 X = 8为 E等高线, 联立方程组

$$X = (x_{k} = x(k) + (t_{k} - k)[x(k+1) - x(k)],$$

$$\begin{cases} k = 1, ..., n-1 \} \\ X = \varepsilon \end{cases}$$

(2)

则等高线 ε 在折线图上的等高点为 $x \varepsilon = (P_1, P_2, ..., P_m)$ 。其中, P_i 位于第i 段折线上, 其坐标为

$$\begin{cases} t_{i} + \frac{\mathcal{E}_{-} x(t_{i})}{x(t_{i}+1) - x(t_{i})}, \, \xi \\ q(i) = t_{i} + \frac{\mathcal{E}_{-} x(t_{i})}{x(t_{i}+1) - x(t_{i})}, \, i = (1, 2, \dots, m) \end{cases}$$

$$(3)$$

称 $Q^{(0)} = (q(1), q(2), ..., q(m))$ 为 ϵ 的等高时刻序列。在等高时刻序列的基础上建立相同数量的 GM(1,1) 模型,结合遗传算法对 GM(1,1) 模型进行优化,建立 GA-GM(1,1) 模型预测群,对未知时刻进行灰色波形预测,若不同预测值中出现一对相近时刻则视为一对无效预测时刻^[13]。

2 白洋淀天然入淀水量趋势分析

2.1 研究区域概况

白洋淀位于东经 115°45′ – 116°06′、北纬 38°44′ – 38°59′, 东西长 395 km, 南北长 28.5 km, 是华北平原地区最大的草型淡水湖泊, 素有"华北之肾"之称。白洋淀地区属温带大陆季风气候, 四季分明, 雨热同

期,多年平均降雨量 523 mm,降雨量的年际变化大,最丰年和最枯年可相差 3 倍以上。近几十年来流域气候向暖干方向发展,气温逐年升高,降水和径流呈现明显的减少趋势。白洋淀淀区包括 10 个乡镇,39 个纯水村,134 个半水村,淀区人口约 34.3 万。除水产业外,淀区旅游业和轻工业也发展迅速,初步形成了三业并举的经济格局。

白洋淀所处永定河冲积扇与潴沱河冲积扇相夹持的低洼地区,入淀河流交汇构成扇形河网,汇流一处,形成天然洼地。 日洋淀天然入淀水量呈明显的枯水期、丰水期交替演化规律,20世纪70年代为丰水期年入淀水量均在15亿 m³以上,20世纪80年代后进入枯水期曾连续出现5年干淀,20世纪90年代中期进入短暂的丰水期,21世纪初淀区再次出现多年干淀现象;白洋淀上游河道上陆续修建了100余座水库,总库容36亿 m³,其中6座大型水库库容合计为33016亿 m³,蓄水工程的修建使得本就不充足的白洋淀来水水量大为减少。白洋淀地理位置及主要入淀河流见图2。

图 2 日洋淀地理位直及主要八淀河流

Fig. 2 Location of Baiyangdian Lake and main inflow rivers

2.2 等高时刻序列数据准备

20世纪70年代前,白洋淀天然入淀流量大致与降水同步,不受人为影响^[14]。20世纪70年代后,白洋淀上游各主要水库已竣工,年际天然入淀水量的变化也进入了新的阶段,故数据分析应从1970年开始,整理1970年-2003年白洋淀天然入淀水量见图3。

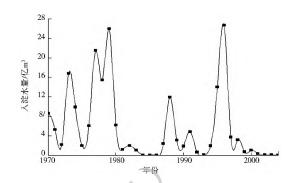


图 3 1970年- 2003 年白洋淀天然入淀水量 Fig. 3 The quantity of natural flow into Baiyangdian Lake during 1970 2003

1970年天然入淀水量为 8 634 亿 m³ 基本处于 丰水期峰值,信息序列的终止年份也应处于丰水期峰值,故选择 1970 年- 1996 年天然入淀水量为信息序列。根据调查研究[1516]白洋淀最小生态水量为 1. 079 亿 m³,平水年水资源量为 1. 58 亿 m³,除特大洪水年份天然入淀量一般在 4 亿 m³ 以下。故布设等高线时对 1 亿 m³ 水量以下细致布设,1 亿 m³ 以上水量有跨度布设,各等高线对应的时刻构成等高时刻序列,为方便计算记 1970 年为时刻 1t(t表示1个年份时刻),即 1970 年- 1996 年为时刻 1t~ 27t。等高线及其对应等高时刻序列见表 1。

表 1 等高线及其对应等高时刻序列

Tab. 1 Contour lines and the corresponding information sequences

等高线 ε			:	等高线对应的	勺等高时刻序	列/t 的个数				
0. 05	14. 952	17. 021	24. 000	-	-	-	-	- X	_	-
0. 1	14. 904	17. 042	23. 914	24. 027	-	-	-	, _L-X7	-	-
0.5	14. 519	17. 211	23. 224	24. 242	-	-	- , \	**	-	-
1	14. 039	17. 422	22. 912	24. 511	-	-	一个	_	-	-
2	5. 994	6. 012	11. 832	17. 844	20. 864	21. 057	22. 674	25.007	-	-
3	2. 731	3. 056	5. 868	6. 257	11. 633	18. 066	20. 064	21.390	22. 436	25. 090
3.5	2. 567	3. 090	5. 805	6. 380	11. 533	18. 118	19. 953	21.557	22. 317	25. 132

2.3 模型的建立和优化

利用 MATLAB 操作平台,以遗传算法优化 GM(1,1)模型,建立 GA-GM(1,1)优化模型,以总相对误差最小为目标函数,对 GM(1,1)模型的迭代

基值 α与背景值系数 β 进行迭代寻优。根据优化好的 GM(1,1) 预测群建立 GA-灰色波形模型,对白洋淀天然入淀水量趋势进行分析。

遗传算法物种优化参数设置为:染色体数 2. 群

体规模 100, 最大迭代系数 200, 选择概率 0 08, 交叉概率 0 4, 变异概率 0.08。为分析 GA-GM(1,1) 优化模型拟合信息序列的效果,将优化的拟合结果

与传统 GM(1,1) 模型相对比。优化后的 GM(1,1) 模型迭代基值 α 与背景值系数 β 见表 2, GA- GM(1,1) 模型拟合优化结果见表 3。

表 2 优化后的迭代基值α与背景值系数β

Tab. 2 The optimized iterative basic value α and background value coefficient β

等高线ε	0. 05 0. 1	0. 5	1	2	3	3. 5
迭代基值α	14. 944 14. 894	14. 471	14. 059	5. 986	2. 726	2. 607
背景值系数β	0. 461 0. 680	0. 612	0. 555	0.600	0. 868	0. 836

表 3 GA-GM(1,1)与GM(1,1)拟合等高时刻序列精度对比

Tab. 3 The matched information sequence results of GA-GM (1, 1) and GM (1, 1) models

等高线 ε	- (!)	GM(1, 1)与	GA-GM(1, 1) 拟台	*等高时	刻序列结	果/ t 的个	数			拟合总的相对误差(%)
	等高时刻序列	14. 952	17. 021	24. 000	-	-	-	-	-	-	-	-
0. 05	GM(1, 1)	14. 952	16. 826	23. 646	-	-	-	-	-	-	-	2. 624
	GA-GM(1, 1)	14. 944	17. 091	24. 129	-	-	-	-	-	-	-	1. 001
(-X)	等高时刻序列	14. 904	17. 042	23. 914	24. 027	-	-	-	-	-	-	-
0. 1	GM(1,1)	14. 904	18. 423	21. 465	25. 010	-	-	-	-	-,	7	22. 431
_	GA-GM(1,1)	14. 894	17. 880	20. 782	24. 155	-	-	-	-	7	-	18. 613
	等高时刻序列	14. 519	17. 211	23. 224	24. 242	-	-	-	-XX	٧-/	-	-
0. 5	GM(1,1)	14. 519	18. 254	21. 348	24. 968	-	-	-	X	_	-	17. 129
_	GA-GM(1, 1)	14. 471	17. 845	20. 820	24. 291	-	-	-(<u> </u>	-	-	14. 572
	等高时刻序列	14. 039	17. 422	22. 912	24. 511	-	>	4-	_	-	-	-
1	GM(1,1)	14. 038	18. 252	21. 394	25. 076	-		7-	-	-	-	13. 697
_	GA-GM(1, 1)	14. 059	17. 987	21. 044	24. 622	-	**	_	-	-	-	11. 994
	等高时刻序列	5. 994	6. 012	11. 832	17. 844	20. 864	21. 057	22. 674	25. 007	-	-	-
2	GM(1,1)	5. 994	11. 204	12. 981	15. 039	17. 424	20. 187	23. 388	27. 096	-	-	143. 899
_	GA-GM(1, 1)	5. 986	11.001	12. 724	14. 718	17. 025	19. 692	22. 778	26. 347	-	-	138. 851
	等高时刻序列	2. 731	3. 056	5. 868	6. 257	11. 633	18. 066	20. 064	21. 390	22. 436	25. 090	-
3	GM(1,1)	2. 731	7. 050	8. 425	10. 069	12. 034	14. 381	17. 187	20. 541	24. 548	29. 338	303. 669
	GA-GM(1,1)	2. 728	6. 436	7.613	9. 006	10. 653	12. 601	14. 905	17. 631	20. 856	24. 670	275. 059
,	等高时刻序列	2. 567	3. 090	5. 805	6. 380	11. 533	18. 118	19. 953	21. 557	22. 317	25. 132	- /
3.5	GM(1,1)	2. 567	7. 050	8. 425	10. 069	12. 033	14. 380	17. 186	20. 539	24. 546	29. 334	301. 342
_	GA-GM(1, 1)	2. 607	6. 544	7. 753	9. 187	10. 885	12. 898	15. 282	18. 108	21. 455	25. 422	269. 712

由表 2 可看出优化后的背景值系数 β 有了很大的变化, 迭代基值 α 也进行了微小的调整, 使拟合曲线能更精准的拟合实际曲线的走势。由表 3 可看出6个以等高时刻序列为基础信息构成的 GM(1,1)模型经遗传算法优化拟合能力得到了提高, 形成了更精准的以 GA-GM(1,1)模型群为基础的 GA-灰色波形模型。

2.4 分析白洋淀天然入淀水量趋势

根据 G A- 灰色波形模型得到的拟合序列,做3t 个未知时刻的预测,作为对比将传统灰色模型也做3t 个时刻的预测。整理预测时刻数据见表 4,数据中含有许多接近或模糊的无效预测时刻,对于无效预测时刻做如下判别。

- (1) 白洋淀主要入淀河流的天然径流量多在 7 月到 10 月中旬⁽¹⁷⁾,即对于同一级的预测时刻,若两时刻相差 0 4t 之内(即主要入流期) 视为预测时刻太近无法分辨,视为无效预测时刻。
- (2) 灰色模型预测时刻的级数越靠后精准度越差, 所以对不同级预测时刻, 当后一级的预测时刻与上一级的预测时刻相差 0. 8t 以内时, 以上一级的预测时刻为准。
- (3) 灰色模型较适用于短期预测, 故对于预测时刻超过 43t(即 2012年)的天然入淀水量不予考虑。依以上原则甄别无效预测时刻, GA-灰色波形模型与传统灰色波形模型的有效预测时刻数据见表 5。

表 4 GA-灰色波形与传统灰色波形预测时刻

Tab. 4 The forecasted time by the GA-grey wave model and traditional grey wave model

等高线 ε		灰色波形 刻/t 的个		传统灰色波形预测 时刻/t 的个数					
0.05	34. 06	48.09	67. 90	33. 23	46. 70	65. 62			
0. 1	28. 03	32.57	37. 93	29. 14	33. 95	39. 56			
0. 5	28. 41	33.17	38. 62	29. 20	34. 15	39. 94			
1	29. 01	33.97	39. 77	29. 39	34. 45	40. 38			
2	30. 48	35.25	40.78	31. 39	36. 37	42. 14			
3	29. 67	35.15	41.60	35.06	41.90	50.08			
3.5	34. 06	35.53	42. 29	35. 06	41. 90	50. 07			

在 Origin 软件中处理筛选出来的有效预测时刻,采用线性插值的方法得出 29t~43t 时刻对应的等高线值,将时刻转化为年份,对应等高线值即为当年天然入淀水量。经处理后的 GA-灰色波形模型

与传统灰色波形模型预测年际天然入淀水量见表 6,分别做天然入淀水量随年份变化的曲线见图 4、 图 5。根据近年白洋淀天然入淀水量实际资料,对 比 G A-灰色波形模型与传统模型的预测结果。

表 5 GA- 灰色波形与传统灰色波形有效预测时刻

Tab. 5 The effective forecasted time by the GA-grey wave model and traditional grey wave model

等高线ε		灰色波形 时刻/t的		传统灰色波形有效 预测时刻//t的个数				
0. 05	34. 06	-	-	33. 23	-	-		
0. 1	-	32. 57	37. 93	-	-	-		
0. 5	-	33. 17	38. 62	-	-	-		
1	29. 01	-	39. 77	-	-	40. 38		
2	-	-	40. 78	31. 39	36. 37	42. 14		
3	29. 67	-	41.60	-	-	-		
3. 5	_	_	42. 29	-	-	-		

表 6 GA- 灰色波形与传统灰色波形预测 天然入淀水量

Tab. 6 The forecasted natural flow quantity into Baiyangdian Lake by GA grey wave model and traditional grey wave model

															1乙 m ³
年份	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
传统灰色波形	4. 53	3. 47	2. 41	1. 35	0. 29	0. 53	1. 15	1. 77	1. 84	1. 59	1. 34	1. 09	1. 35	1. 92	2.49
GA-灰色波形	0. 97	2. 67	1. 67	0. 67	0.39	0.08	0.06	0.08	0.09	0.14	0. 67	1. 23	2. 27	3. 29	4. 01

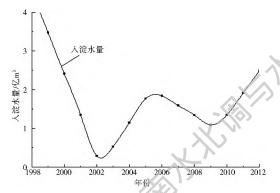


图 4 传统灰色波形预测结果

Fig. 4 The forecast results of traditional grey wave model

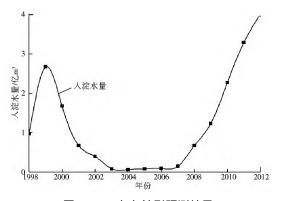


图 5 GA- 灰色波形预测结果

Fig. 5 The forecast results of GA-grey wave model

2.5 根据实际资料检验模型结果

根据海河水利委员会近年来对白洋淀的调查显

示^[1819], 白洋淀自 1998 年天然入淀水量达到 2.73 亿 m³ 后逐年下降。进入 21 世纪初, 白洋淀所在流域遇到连续的枯水年份, 其中 2003 年干淀, 2004 年继续干淀流域机构紧急调取岳城水库的水输水救淀, 然而 2005 年— 2006 年再度干淀^[20]。 2009 年以后白洋淀水资源短缺形势有所缓解, 2012 年华北地区普降暴雨, 白洋淀入淀流量达到了 3.15 亿 m³ 为1997 年以来的最高值, 白洋淀 13 年以来首次不需外来水源补充。

图 4 为传统灰色波形预测的天然入淀水量。由图 4 可知,模型预测结果没有明显反映出枯、丰水期的变化。虽然基本反映了 1998 年至 2002 年水量下降与 2009 年以后水量上升的趋势,但在 2003 年—2009 年间连续 7 年枯水年的预测上出现了严重偏差。分析原因发现传统灰色波形模型选用的背景值系数不准确,很难抓住不同信息序列发展的细微特点,致使预测时刻过于接近,有效预测时刻太少,很难详细真实的反映天然入淀水量变化。

图 5 为 GA- 灰色波形预测的天然入淀水量。由图 5 可知,模型预测结果明显反映出了枯、丰水期的变化。模型显示丰水期入淀水量自1998年开始,到2002年降为 0 5 亿 m³ 为止;之后进入2003年-2009年连续7年的枯水年,期间自2003年-2007

年基本干淀,2009年以后水量超过1亿 m³ 基本脱离了枯水期;此后进入下一丰水期,入淀水量在2012年达到4.01亿 m³,模型结果基本符合自洋淀历年水情。可以看出 GA-灰色波形模型不仅在水量方面,且在丰、枯水期交替演化方面都表现出了比传统模型更高的精度。然而也发现1998年的预测水量确实出现了大的偏差,分析原因发现1998年对应的时刻过于靠前,由于信息序列的数据有限,优化的模型群在1998年时间段的预测值太少,很难对该时间段的预测值进行有效甄别。

3 结论

本文利用遗传算法收敛快,选择范围广的优点对灰色 GM(1,1)模型的迭代基值 α 与背景值系数 β 进行迭代寻优。建立了优化的灰色波形预测体系,并对白洋淀天然入淀水量变化趋势进行了研究,结论如下。

- (1) GA- GM(1,1) 模型拟合精度高。虽然优化后的迭代基值和背景值系数都只做了微小的调整,但拟合曲线更加贴近于实际曲线的走势, 更好的把握不同曲线变化的特点。使 GA-GM(1,1) 模型在对 6 个等高时刻序列拟合的过程中都表现出了比传统 GM(1,1) 模型更高的精度。
- (2) GA-灰色波形模型准确度高。以 GA-GM(1,1)为基础建立 GA-灰色波形模型,较为准确的预测出了 1998 年—2012 年白洋淀天然入淀水量的变化趋势。传统灰色波形模型预测的情况与实际资料差距较大,在拟合两个数据相近的信息序列时无法抓住信息序列变化的细微差别,对相近序列的预测没有区分度,而 GA-灰色波形模型通过对参数的优化,能在相近的信息序列中找到它们各自变化的细微差别。

综上所述, GA-灰色波形模型方便快捷, 与传统模型相比在信息拟合、水量预测方面都有更高的精度。因此, GA-灰色波形模型适用于白洋淀天然入淀水量的研究, 也为研究湖泊水资源变化提供了一种新思路。

参考文献(References):

- [1] 刘春兰, 谢高地, 肖玉. 气候变化对白洋淀湿地的影响[J]. 长江流域资源与环境, 2007, 16(2): 245 250. (LIU Churr lan, XIE Gaσdi, XIAO Yu. Impact of climatic change on Baiyangdian wetland[J]. Resources and Environment in the Yangtza Basin, 2007, 16(2): 245 250. (in Chinese))
- [2] Deng J L. The Control problem of grey systems[J]. System & Control Letter, 1982, 1(5): 288 294.
- [3] 邓聚龙. 灰色系统基本方法[M]. 武汉: 华中工学院出版社, 1987, 11, 154-158. (DENG Jurlong. The primary methods of

- grey system theory[M]. Wuhan: Huazhong Institute of Technology Press, 1987, 11, 154-158. (in Chinese))
- [4] 钟珞, 江琼, 张诚, 等. 基于最优 初始条件和 动态辨识 参数的灰色时程数据预测[J]. 武汉理工大学学报: 交通科学 与工程版, 2004, 28(5): 685 691. (ZHONG Luo, JIANG Qiong, ZHANG Cheng, et al. Prediction of time displacement data based on best initialization condition and dynamic identifying parameter[J]. Journal of Wuhan University of Technology: Transportation Science & Engineering, 2004, 28(5): 685 691. (in Chinese))
- [5] 杨华龙, 刘金霞, 郑斌. 灰色 预测 GM(1,1) 模型的改 进及应用 [J]. 数学的实践与认识, 2011, 41(23): 39-46. (YANG Long hua, LIU Jir xia, ZHENG Bin. Improvement and application of grey prediction GM(1,1) model[J]. Mathematics in Practice and Theory, 2011, 41(23): 39-46. (in Chinese))
- [6] 邵良杉, 马寒, 温廷新, 等. 遗传算法优化的 GM(1,1) 模型研究 [J]. 统计与决策, 2015(4): 22-24. (SHAO Liang shan, MA Han, WEN Ting xin, et al. The research on the Genetic algorithm optimization of GM(1,1) model[J]. Statistics & Decision, 2015(4): 22-24. (in Chinese))
- [7] 李希灿, 袁征, 张广波, 等. GM(1, 1,β) 灰微分方程的若干性质 [J]. 系统工程理 论与实践, 2014, 34(5): 1249 1255. (LI Xican, YUAN Zheng, ZHANG Guang bo, et al. Some properties of grey differential equation GM(1, 1,β) [J]. Systems Engineering Theory & Practice, 2014, 34(5): 1249 1255. (in Chinese))
- [8] Quang T D, Ahn K K, Yoon J I, et al. Design of a modified grey model MGM (1, 1) for real time control of wave energy converters [C]. International Conference on Control, Automation and Systems, 2011, 1606-1611.
- [9] Olson D L, Wu De sheng. Simulation of fuzzy multitattribute model for grey relationships [J]. European Journal of Operational Research, 2006, 175(1):111-120.
- [10] 李英华, 崔保山, 杨志峰. 白洋 淀水文特征 变化对湿 地生态环境的影响[J]. 自然资源学报, 2004, 19(1): 62 68. (LI Ying hua, CUI Baσ shan, YANG Zhr feng. Influence of hydrological characteristic change of Baiyangdian on the ecological envrronment in wetland[J]. Journal of Natural Resources. 2004, 19(1): 62 68. (in Chinese))
- [11] 王正新, 党耀国, 刘思峰. 基于离散指数函数优化的 GM (1, 1) 模型[J]. 系 统工程理 论与实践, 2009, 29 (10): 138 144. (WANG Zheng xin, DANG Yao guo, LIU Sifeng. An optimal GM (1, 1) based on the discrete function with exponential law[J]. Systems Engineering Theory & Practice, 2009, 29 (10): 138 144. (in Chinese))
- [12] 徐国宾, 韩文文, 王海军, 等. 水电站泄流诱发厂房结构振动响应预测[J]. 天津大学学报: 自然科学与工程技术版, 2015(3): 196 202. (XU Guo bin, HAN Werrwen, WANG Hair jun, et al. Prediction of vibration response of powerhouse structures caused by flow discharge[J]. Journal of Tianjin University Science and Technology, 2015(3): 196 202. (in Chinese))
 - 13] 刘思峰. 灰色系统理论及其应用[M]. 北京: 科学出版社, 2008, 12, 133 135. (LIU Sirfeng. The grey system theory and its application[M]. Beijing: Science Press, 2008, 12, 133 135. (in Chinese))

(下转第49页)

- [9] Breckpot M, Agudelo O M, Meert P, et al. Flood control of the Demer by using Model Predictive Control [J]. Control Engineering Practice, 2013, 21(12): 1776-1787. DOI: 10. 1016/j. conengprac. 2013. 08. 008
- [10] Morales Hern ndez M, Garcar Navarro P, Burguete J, et al. A conservative strategy to couple 1D and 2D models for shallow water flow simulation [J]. Computers & Fluids, 2013, 81: 26-44. DOI: 10.1016/j. compfluid. 2013. 04.001
- [11] Finaud Guyot P, Delenne C, Guin ot V, et al. 1D 2D coupling for river flow modeling [J]. Comptes Rendus M canique, 2011, 339(4): 226 234 DOI:10. 1016/j. crme. 2011. 02. 001
- [12] Dewals B, Erpicum S, Detrembleur S, et al. Failure of dams arranged in series or in complex[J]. Natural Hazards, 2011, 56(3):917-939. DOI: 10.1007/s11069010-9600z
- [13] Dushmanta D, Jahangir A, Kazuo U, et al. A two-dimensional hydrodynamic model for flood inundation simulation: A case study in the lower Mekong river basin[J]. Hydrological Progresses, 2007, 21: 1223-1237. DOI: 10. 1002/ hyp. 6682
- [14] 郭凤清, 屈寒飞, 曾辉, 等. 基于 MIKE21 的潖江 蓄滞洪 区洪水危险性快速预测[J]. 自然灾害学报, 2013(6): 144-152. (GUO Feng qing, QU Harr fei, ZENG Hui, et al. Flood haz ard forecast of Pajiang River flood storage and detention basin based on MIKE21[J]. Journal of Natural Disasters, 2013 (6): 144-152. (in Chinese)) DOI: 10. 13577/j. jnd. 2013. 0320
- [15] 杨志, 冯民权. 溃口近区二维数值模拟与溃坝洪水演进耦合 [J]. 水利水运工程学报, 2015(1): 8-19. (YANG Zhi, FENG Mirr quan. 2D numerical simulation of breach area and coupling simulation of dam breach flood[J]. Hydro Science and Engineering, 2015(1): 8-19. (in Chinese)) DOI: 10. 16198/j

- cnki. 1009-640X.2015. 01. 002
- [16] 衣秀勇. 洪水模拟技术应用与研究[M]. 中国水利水电出版 社, 2014: 10 12. (YI Xirr yong. Application and Research of The Flood Simulation Technology[M]. China Water & Power Press, 2014: 10 12. (in Chinese))
- [17] 张大伟, 李丹勋, 陈稚聪, 等. 溃堤洪水的一维、二维耦合水动力模型及应用[J]. 水力发电学报, 2010, 29(2): 149 154. (ZHANG Darwei, LI Darrxun, CHEN Yarcong, et al. Coupled one and two dimensional hydrodynamic models for levee breach flood and its application[J]. Journal of Hydroelectric Engineering, 2010, 29(2): 149 154. (in Chinese))
- [18] 宋利祥. 溃坝洪水数学模型及水动力学特性研究[D]. 武汉: 华中科技大学, 2012: 26 31. (SONG Lixiang. Research on mathematical model and hydrodynamic characteristics of dam break floods[D]. Wuhan: Huazhong University of Science & Technology, 2012: 26 31. (in Chinese))
- [19] 张防修, 韩龙喜, 王明, 黄瑞. 主槽一维和滩地二维侧向耦合洪水演进模型[J]. 水科学进展, 2014, 25(4): 560-566. (ZHANG Fang xiu, HAN Long xi, WANG Ming, HUANG Rui. Flood routing model with lateral coupling one dimensional channel and twσ dimensional floodplain simulation [J]. Advance in Water Science, 2014, 25(4):, 560-566. (in Chinese)) DOI: 10. 14042/j. enki. 32. 1309. 2014. 04. 017
- [20] 苑希民, 田福昌, 王丽娜. 漫溃 堤洪水联算 全二维水 动力模型 及应用[J]. 水科学进展, 2014, 26(1): 83-90. (YUAN Xi min, TIAN Fuchang, WANG Lina. Comprehensive tw σ dimension al associate hydrodynamic models for overflow and levee—breachflood and its application[J]. Advance in Water Science, 2014, 26(1): 83-90. (in Chinese)) DOI: 10. 14042 / j. cnki. 32. 1309. 2015. 01. 011

(上接第14页)

- [14] 吕彩霞, 牛存稳, 贾仰文. 白洋淀流域 气象要素 和人类取用水变化过程分析[J]. 南水北调 与水利科技, 2011, 9(6): 23-26. (LV Carxia, NIU Currwen, JIA Yang wen. Analysis of the Variations of the Meteorological Elements and Water Usage in the Baiyangdian Lake Basin[J]. South to North Water Driversion and Water Science & Technology, 2011, 9(6): 23-26. (in Chinese))
- [15] 赵翔, 崔宝山, 杨志峰. 白洋淀 最低生态 水位研究[J]. 生态学报, 2005, 25(5): 1033-1040. (ZHAO Xiang, CUI Bao shan, YANG Zhirfeng. A study of the low set ecological water level of Baiyangdian lake[J]. Acta Ecologica Sinica, 2005, 25(5): 1033-1040. (in Chinese))
- [16] 闫新兴, 张素珍, 李素丽, 等. 白洋淀水资源综合承载力最佳水位研究[J]. 南水北调与水利科技, 2009, 7(3):8183. (YAN Xim hua, ZHANG Sur zhen, LI Sur li, et al. Study on optimal water level of comprehensive bearing capacity to water resources in Baiyangdian[J]. South to North Water Diversion and Water Science & Technology, 2009, 7(3):8183. (in Chinese))
- [17] 尹健梅,程伍群,严磊. 白洋淀湿地水文水资源变化趋势分析

- [J]. 水资源保护, 2010, 25(1): 52-55. (YIN Jiam mei, CHENG Wur qun, YAN Lei. Change of water resources in the Baiyang dian wetland[J]. Water Resources Protection, 2010, 25(1): 52-55. (in Chinese))
- [18] 白洋淀湿地生态现状调查报告,海河流域水资源保护局[R]. 2010. (Haihe Water Resources Protection Bureau, The ecological status report of Baiyangdian wetland[R]. 2010. (in Chinese))
- [19] 白洋淀健康评估报告, 海河流域 水环境 监测中心[R]. 2012. (Haihe River Water Environmental Monitoring Center, The report of Baiyang dian health assessment [R]. 2012. (in Chrnese))
- [20] 王朝华、王子璐、乔光建. 跨流 域调水对恢复白洋淀生态环境 重要性分析[J]. 南水北调与水利科技, 2011, 9(3): 138 141. (WANG Chaσhua, WANG Zrlu, QIAO Guang jian. Analysis of importance of interbasin water diversion to restoration of ecological environment of Baiyangdian lake [J]. Southrtσ North Water Transfers and Water & Science Technology, 2011, 9(3): 138-141. (in Chinese))