

DOI: 10.13476/ j. cnki. nsbdqk. 2017.05.019

宋超, 王攀, 韩贵琳, 等. 黄土塬区浅层地下水化学特征及其碳循环意义[J]. 南水北调与水利科技, 2017, 15 (5): 121-126. SONG Chao, WANG Pan, HAN Guilin, et al. The hydrochemical characteristics of shallow groundwater in loess tableland and its implication to carbon cycle[J]. South to North Water Transfers and Water Science & Technology, 2017, 15(5): 121-126. (in Chinese)

黄土塬区浅层地下水化学特征及其碳循环意义

宋超^{1,2},王攀¹,韩贵琳²,石迎春¹

(1.中国地质科学院水文地质环境地质研究所,石家庄 050061; 2.中国地质大学(北京)水资源与环境学院,北京 100083)

摘要: 对甘肃省灵台县独店镇秋射村黄土剖面浅层地下水的水化学组成、溶解无机碳(DIC)、溶解有机碳(DOC)、颗粒有机碳(POC)等进行了取样分析,对其δ¹³ C_{DC}和δ¹³ C_{POC}的特征及其控制因素进行了探讨,并评估了降雨补给过程中的碳酸盐风化碳汇强度。结果表明,研究区地下水的水化学类型为HCO₅ Ca•Mg型,其方解石饱和指数*SIc*大于 0,已经饱和,但尚未达到大规模沉淀的程度。研究区黄土浅层地下水的DIC 变化范围为 5.25~545 mmol/L,DOC 含量为 0.59~062 mg/L,明显低于地表水体;而 POC 稍高,这是因为黄土颗粒物的混入造成。泉水和井水的δ¹³ C_{DIC}变化范围在-919‰~-890‰之间,其较高的δ¹³ C 与碳酸盐风化-沉积过程中反复的碳同位素交换有关。而δ¹³ C_{POC}变化范围在-1999‰~-1887‰之间,与黄土有机碳同位素特征基本一致。地下水中的HCO₃、Ca²⁺和 Mg²⁺主要来源于碳酸盐的化学风化。根据风化反应的离子平衡关系,计算得到研究区的风化碳汇为282 mmol/L,即每有1L的降水入渗到零通量面以下,就会产生282 mmol的碳汇。**关键词**:黄土;地下水;泉水;水化学;无机碳;碳循环

中图分类号: P641, X142 文献标识码: A 文章编号: 1672 1683(2017) 05 012 + 06

The hydro chemical characteristics of shallow groundwater in loss tableland and its implication to carbon cycle SONG Chao^{1,2}, WANG Pan¹, HAN Gui lin², SHI Ying chun¹

(1. The Institute of Hydrogeology and Environmental Geology, Chinese A cademy of Geological Sciences, Shijiazhuang 050061, China; 2. School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China **Abstract:** We analyzed the hydro chemical composition, dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), particulate organic carbon (POC) in the shallow groundwater of a loess profile in Qiushe village, Dudian town, Lingtai county, Garr su province of Northwestern China, discussed the characteristics and controlling factors of the $\delta^{13}C_{DC}$ and $\delta^{13}C_{POC}$, and as sessed the CO₂ consumption of carbonate weathering during rainfall recharge. The results showed that the hydror chemical type of the groundwater in the study area was the HCO₅ Ca• Mg type. The saturation index of calcite (SIc) was above 0, indicating full saturation but no massive precipitation yet. The DIC concentration in the shallow groundwater of the loess area was 5 25~ 5. 45 mmol/ L and the DOC concentration was 0. 59~ 0. 62 mg/L, which were lower than those in surface water. The POC concentrat tion was high due to the mixture of loess particle matter. The δ^{13} C of DIC in spring water and well water ranged from – 9. 19‰ to – 8. 90‰. This might be associated with the repeated exchange of C isotope during the process of carbonate weathering and precipitation. The $\delta^{13}C_{POC}$ ranged from – 19. 99% to – 18. 87‰, which was consistent with the isotope ratio of the organic carbon in loess. The HCO₃, Ca²⁺ and Mg²⁺ in groundwater mainly came from the weathering of carbonate in loess. According to the ion balance of carbonate weathering reaction, we calculated the CO₂ sink by carbonate weathering in the study area to be 2 82 mmol/ L. In other words, 2. 82 mmol CO₂ can be absorbed by carbonate weathering when every 1 L rainfall infiltrates be

收稿日期: 2016-08-11 修回日期: 2017-01-20 网络出版时间: 2017-08-29

网络出版地址: http://kns.cnki.net/kcms/detail/13.1334.TV.20170829.1929.020.html

基金项目:自然科学基金项目(41403107; 41325010);地科院水环所基本科研业务费项目(SK201208);中国地质调查项目 (12120113005900)

Funds: National Natural Science Foundation of China (41403107 : 41325010); Basic Science Research Fund from the Institute of Hydrogeology and Environmental Geology (SK 201208); China Geological Survey Projects (12120113005900)

作者简介:宋 超(1982),男,甘肃灵台人,博士研究生,主要从事环境地球化学方面的研究。E-mail: chaor song@qq. com

low the zero flux plane.

Key words: loess; groundwater; spring water; hydro- chemistry; inorganic carbon; carbon cycle

我国北方黄土高原面积达 64 万 km², 典型部位 的黄土覆盖厚度达 200 m 以上, 与南方岩溶区一 样, 同属巨大的碳库^[1], 在区域甚至全球碳循环中扮 演着重要角色。在未经后期风化淋滤的黄土中, CaCO₃ 的含量大于 12%, 甚至高达 16. 1%, 钙结核 淀积层的含量变化范围为 49% ~ 62%^[2]。文启忠 等的研究表明, 原生方解石在黄土碳酸盐中所占比 例仅为 2% ~ 20 8%, 平均为 10 3%, 大部分都为次 生碳酸盐^[3]; 另一方面, 黄土地区大量的地表水/ 地 下水水化学资料^[410]表明黄土地区水体中的主要阴 离子是 HCO₃。这两方面均表明黄土碳酸盐的溶 解沉积过程是黄土中的主要地球化学过程, 且该过 程中所涉及的碳的迁移与转化对于区域/全球碳循 环具有重要的科学意义。

泉水作为地下水的天然露头,通常被用于捕获 水、岩石(土壤)、大气、微生物各个圈层中碳循环机 制及其碳通量的信息[11-15]。但截止目前,与我国南 方喀斯特地区较为深入的研究程度相比,黄土地区 以碳循环为视角对泉水进行类似的研究还不多见。 赵景波等[1618] 先后报道了陕西秦岭翠华山泉(片麻 岩、混合岩裂隙出露)、水秋池泉(片麻岩、混合岩裂 隙出露)、镇安县渔洞河村灰岩岩溶泉以及长安县杨 万村黄土泉(第5层黄土中出露)的泉水化学特征。 但这些研究对于深入理解黄土地区碳循环机制及其 碳汇效应还不够。本文以甘肃省灵台县独店镇秋射 村黄土剖面出露的泉水为研究对象,通过取样分析 其水化学特征、溶解无机碳(DIC)含量、颗粒有机碳 (POC)含量、溶解有机碳(DOC)含量以及δ¹³ Conc和 δ¹³ Croc, 试图从"水"的角度更好地理解黄土塬区土 壤的碳循环过程,旨在进一步揭示黄土深层碳库,为 黄土碳汇的潜力评估提供科学依据。

1 研究区概况

本研究的黄土剖面位于甘肃省平凉市灵台县独 店镇秋射村(107°41′08 79″E;35°10′0813″N;图 1),与陕西省长武县毗邻,距甘陕交界处仅有5km。 研究区为宽1.1~1.5km 不等的长条形黄土残塬 地貌,塬面比较完整、平坦,其海拔高度大约1240 m。研究区属暖温带半湿润大陆性季风气候,年均 气温9.2℃;平均降雨量6055mm,主要集中在7 月-9月3个月;多年平均蒸发度1415~1492

mm。大气降水下渗补给地下水,然后向塬周围运 动,以下降泉形式向塬边沟谷排泄。整个含水层呈 中间部位厚度大、四周薄的缓丘状。研究区残塬中 心部位的地下水埋深 56~ 60 m,含水层厚度 25 m, 最大涌水量为199 m³/d^[19],在塬区周边,由于沟谷 对地下水的疏干作用,地下水埋深则在80m以上, 含水层厚度也相应变薄。包气带土层较厚,且夹有 多层由古土壤(亚黏土),致使降雨的入渗速率较慢 (33~94 mm/a),补给周期较长^[2023]。残塬四周沟 内黄土剖面均有常年性泉水出露(LGO、HMO、 CZQ、YYQ;图1),其中LGQ的流量为0.43 L/s^{19]}。地下水化学特征较为稳定,无明显的季节 变化等特征(未发表数据,另文讨论)。本研究区的 黄土泉均沿黄土沟流动,先汇入黑河,再汇入泾河, 最后汇入渭河。区内井水 QSJ 作为当地居民生活 用水(图1)。

图 1 研究区水文地质概况 Fig. 1 The hydrogeological sketch map of the study area

2 样品采集与分析方法

泉水常被用于进行碳酸盐化学风化机制及其碳 汇的相关研究^[11-15],黄土地层中由降水-补给-排泄 驱动的碳酸盐风化过程可以利用黄土泉水(浅层地下 水的天然露头)来加以探索。由于LGQ、HMQ、CZQ、 YYQ和QSJ属于同一含水层,加之黄土地层出露的 泉水在雨季易受雨水冲刷、泉口坍塌、水土流失等因素的干扰,本研究首先选择在干扰因素相对较少的冬季(先后于2012年1月20日和2013年1月15日)对泉水LGQ和井水QSJ进行了采样分析与研究(图1)。为了解研究区雨水水化学的背景特征和探讨碳酸盐风化碳汇效应,本研究于2012年8月31日对区内雨水进行了一次取样分析。

2.1 现场监测与样品采集

水温、pH 值、电导率、溶解氧和氧化还原电位 等参数使用便携式水质自动监测仪现场测量。采集 的水样在野外利用 Whatman GF/F 玻璃纤维滤膜 过滤。取约 40 mL 过滤液用 6 mol/L 盐酸酸化至 pH= 2, 带回实验室用于 DOC 浓度的测定。取过滤 过约 10 L 水的滤膜,带回实验室,一部分用于 POC 浓度的测定,另一部分经高温燃烧为CO₂,收集于真 空管中纯化用于测 δ¹³ Croc。δ¹³ CDIC 样品在野外采 用"直接沉淀法"密封带回实验室处理。

2.2 实验室分析

阳离子 K⁺、Na⁺、Ca²⁺、Mg²⁺使用电感耦合等离 子体发射光谱仪测定。阴离子 SO²⁺、CΓ 和 NO₃使 用离子色谱法测定。HCO₃用酸标准溶液滴定法。 水样 DOC 采用总有机碳/氮分析仪测定。样品的 POC 浓度利用元素分析仪测定。DIC 和 POC 的δ¹³ C 值利用 M AT-253 质谱仪进行测定。

3 结果与分析

3.1 水化学特征

地下水及雨水的水化学特征测试结果见表 1。 由表1可知,泉水(LGO)与井水(QSJ)的水化学特 征基本相似,这是因为它们属于同一含水层^{19]}。研 究区的地下水 pH 值约为 7.50 左右, 电导率为 505 µs/cm, 溶解氧约为 80% 左右, 水温基本在 13.5 ℃ 上下,氧化还原电位为 233 2~ 273 2 mv。泉水及 井水的阴阳离子浓度显示该区地下水的阴离子主要 是 HCO^{3} ,阳离子主要是 Ca^{2+} 和 Mg^{2+} 。按照水化 学的舒卡列夫分类方法,LGQ 属于 HCO3-Ca•Mg 型水。一般地,地下水中HCO3 主要来源于碳酸盐 矿物及土壤 CO2, 而 Ca 及 Mg 主要来源于碳酸盐矿 物。因此,研究区黄土地下水化学主要受控于碳酸 盐矿物的化学风化过程。泉水和井水的方解石饱和 指数 SIc 为 0.31~0 40,表明地下水方解石已经饱 和,但由于其 SIc 较低,说明还没有达到大规模沉淀 的趋势。而雨水 LTY 的 SIc 为-3 39, 小于 0, 表 明雨水有较强的侵蚀能力。泉水和井水的白云石溶

解指数表明其也基本处于近饱和状态。但石膏没有 饱和,还有溶解能力。

表1 泉水、井水和雨水的水化学分析结果

Tab.1 The results of hydro chemical analysis of

spring water, well water, and rainfall

1	0	<i>,</i>	· ·		
泉	LGQ	QSJ	LT Y	LGQ	QSJ
类型	泉水	井水	雨水	泉水	井水
采样日期	20120115	20120115	20120831	20130120	20130120
pH 值	7.48	7.51	6.27	7.42	7.53
电导率/ (µs•m ⁻¹)	508.0	501.0	-	504.0	505.0
DO (%)	78.4	79.2	-	78.4	86.0
T (°C)	13.1	13.2	-	13.2	13.5
O RP/ mv	284.3	265.3	-	273.3	233. 2
K+/(mg•L ⁻¹)	0.77	0.70	0.30	0.51	0. 69
Na+ /(mg•L-1)	22.00	21.96	0.58	22.08	23.64
$Ca^{2+} / (mg \bullet L^{-1})$	64.17	61.03	1.06	70.13	69.07
Mg ²⁺ / (mg• L ⁻¹)	19. 87	20.36	0.01	21.33	21.10
Cl- / (mg • L- 1)	5.52	4. 49	1.25	4.45	4.09
SO ₄ ²⁻ / (mg/ L)	12.24	4.80	3.00	7.07	7.55
$HCO_{\overline{3}} / (mg \cdot L^{-1})$	320.0	317.1	5.97	320.5	332.2
NO ₃ ⁻ / (mg L ⁻¹)	10.04	11.00	0. 92	12.57	11.91
NICB	4.84	4. 74	- 2.34	5.34	5. 31
SIc	0. 39	0.40	- 3.39	0. 31	0. 32
SId	0. 63	0. 68	- 8.46	0. 29	0. 30
SIg	- 2.55	- 2.98	- 4.57	- 2.72	- 2.74

注: 无机电荷平衡标准化 NICB= (TZ+ - TZ-)/TZ+, TZ+ = Na+ + K+ + 2M g²⁺ + 2Ca²⁺, TZ- = CF + 2SO₄⁻ + HCO₃ + NO₃⁻; SI_c 为方解石饱 和指数; SI d 为白云石饱和指数; SIg 为石膏饱和指数, 饱和指数利用 Phreeqc 软件计算。

3.2 地下水 DIC, DOC 和 POC 含量

地下水的 DIC、DOC、POC 结果见表 2。其中 LGQ 和 QSJ 的 DIC 为 5 25 mmol/L和 5.45 mmol/L, DOC 为0 59 mg/L 和 0.62 mg/L。LGQ 的 POC (0 78 mg/L) 含量明显低于 QSJ (2.17 mg/L), 这是因为 LGQ 出露于古土壤 (亚黏土) 层, 黄土颗粒物混入较少。而机民井 QSJ 本身的结 构较简单, 抽水时均有黄土/古土壤的颗粒物沉淀, 导致其 POC 较高。

表 2 地下水 DIC、DOC、POC 的结果 Tab. 2 The results of groundwater DIC, DOC, POC

类型	采样日期	DIC /(mmol•]	DOC L ⁻¹) / (mg• L ⁻¹)	POC) / (mg • L ^{- 1}	DOC/) POC
LGO 泉水	20130120	5.25	0. 59	0.78	0.76
OSJ 井水	20130120	5.45	0. 62	2.17	0.24
t, DIC- H.	CON HCO	- + CO. 2-	伯当 nH = 7(是 DIC 主

Æ: DIC= H₂CO₃+ HCO₃ + CO₃²⁻, 但当 pH= 7~9 时, HCO₃ 是 DIC 至 要存在形式[24]

黄土浅层地下水 DOC 远低于地表水。本研究

水文地质与工程地质 • 123 •

中发现地下水中的 DOC 含量(0 59~ 0.62 mg/L)。 较地表水低(黄河 DOC 1.51~2.88 mg/L,均值) 2 29 mg/L; 长江口 DOC 1 30 mg/L; 世界河流 DOC 背景值 5.0~60 mg/ L^[7]),该结论与其他研 究得到的结果一致^[25]。Leehneer等^[26]测定了美国 五个不同类型的含水层中地下水,所有含水层中水 体的 DOC 中值都在 0.5~07 mg/L 范围内, 远低 于地表水 DOC 的量^[27]。实际上,大多数关于地下 水和地表水 DOC 方面的研究都表明,地下水中 DOC含量,尤其是天然出露的泉水中 DOC含量都 小于地表水中 DOC 的量^[28 34]。相对地表水和地下 水,表层土壤水含有较高的 DOC, 但是随着土壤深 度的增加, 土壤水 DOC 含量不断减少, 这表明土壤 吸附作用等固定了大量的 DOC。因为深层土壤中 DOC一般受控于土壤吸附与解吸、生物分解排泄、 微生物活动消耗以及土壤溶液的水力过程等[31]。 研究区包气带厚达 50 m,且夹多层古土壤层,在降 水的入渗补给过程中, DOC 极易被古土壤层吸附和 微生物分解,从而使其浓度降低。

3.3 碳同位素

本次研究的泉水和井水的同位素结果见表 3, δ¹³ CDIC大约在-9.19‰--890‰,而δ¹³ CPIC 大约 在-19.99‰--1887‰之间。其中,偏正δ¹³ CDIC (-9.19‰--890‰)主要是因为黄土含水层的补 给周期较长^[2023],水体中的DIC 反复与黄土碳酸盐 通过反应(1)进行碳同位素交换所致。

CaMg(CO₃) 2+ 2H 2O+ 2CO₂ -Ca²⁺ + Mg²⁺ + 4HCO₃ (1)

因为黄土碳酸盐的 δ^{13} C 为 - 9‰~ - 6‰。典 型黄土 剖 面土 壤 有机 碳 的 δ^{13} C 为 - 24‰~ - 18‰^[35], 而相关研究表明黄土地层中土壤 CO₂ 的 δ^{13} C 在 - 11. 14‰~ - 15. 48‰之间。在降雨 - 入 渗过程中(雨水在大气过程中的溶解的碳酸盐对地 下水无机碳的影响可以不予考虑^[36]),雨水溶解黄 土中的碳酸盐矿物,造成较为偏正的 δ^{13} Cpic。而由 于研究区的地下水的 POC 主要来源于黄土颗粒物, 因此其 δ^{13} Cpic (- 19. 99‰~ - 18. 87‰) 主要受黄 土有机碳的 δ^{13} C 的控制。

表 3 δ ¹³ C _{DIC} 和δ ¹³	CPOC的结果
---	---------

Tab. 3 The results of $\delta^{13}C_{DC}$ and $\delta^{13}C_{POC}$

	类型	日期	$\delta^{13} C_{DIC}(\%)$	$\delta^{13}C_{P0C}(\%)$
LGQ	泉水	20130120	- 9.19	- 19.99
QSJ	井水	20130120	- 8.90	- 18.87

3.4 黄土碳酸盐风化碳汇

黄土地下水由大气降水补给^[20-23, 37-38],从降 雨-入渗-补给过程中,黄土中碳酸盐的化学风化 释放的HCO3⁻(HCO3⁻GaCO3</sub>)与Ca²⁺+Mg²⁺在摩尔 数上相等的(如式1)。水中从土壤或大气中吸收的 CO2(HCO3⁻GO2</sub>)摩尔数即可通过计算水中Ca²⁺+ Mg²⁺摩尔数算出^[39]。即碳酸盐化学风化吸收的 CO2 计算模型(碳酸盐风化碳汇模型)为:

 $CO_2 \operatorname{sink} = HCO_3^{-1} \operatorname{total waters} - (Ca^{2+} + Mg^{2+}) \operatorname{total waters}$ (2)

研究区雨水中的主要阴阳离子浓度分别是: Na⁺(058 mg/L)、K⁺(0.30 mg/L)、Ca²⁺(1.06 mg/L)、Mg²⁺(0.01 mg/L)、Cl⁻(1.25 mg/L)、SO4²⁻(300 mg/L)、NO3⁻(0.92 mg/L),其主要离子浓度都较低,可见地下水中的较高的DIC不是直接来源于降水,主要由于(1)所示的反应导致了黄土浅层地下水中以HCO3⁻和Ca²⁺、Mg²⁺为主要阴阳离子的地下水化学特征。在计算时,通常不考虑降水中溶解的微量DIC²⁴。

根据 LGQ 与 LTY 水化学数据,根据碳酸盐风 化碳汇 模型(2),计算得到黄土地区碳酸盐风化碳汇 强度为:

 $CO_2 \text{ sink} = 5.20 - (1.53 + 0.85) = 2.82 \text{ mm ol/L}$

但要计算其年碳汇的总量,需要知道该地区的 有效补给量^[40]。但由于黄土地区的降水有效补给 量目前还存在争议。因此,本文暂不做进一步讨论。

4 结论

(1)研究区的水化学类型为HCOFCa•Mg型。 泉水的方解石饱和指数SIc都大于0,表明其已经饱 和,但其饱和指数的大小显示其尚未达到大规模沉 淀的趋势。

(2) 黄土浅层地下水的 DOC 较低(0 59~0.62 mg/L),明显低于地表水体。而 POC 稍高,这是因为黄土颗粒物的混入造成。泉水和井水的δ¹³ CDIC 大约在-9.19‰--8.90‰,其偏正的δ¹³ C与碳酸盐风化-沉积过程中反复的碳同位素交换有关。而δ¹³ CPOC 大约在-19.99‰--18.87 ‰之间,表明其主要受黄土有机碳同位素的控制。

3) 地下水中的 HCO3 、Ca²⁺ 和 Mg²⁺ 主要来源 于碳酸盐的化学风化。根据风化反应的离子平衡关 系,计算得到研究区的风化碳汇为 2 82 mmol/L, 即每有 1 L 的降水入渗到零通量面以下,就会产生 2 82 mmol的碳汇。

• 124 • 水文地质与工程地质

参考文献(References):

- [1] 万国江, 王仕禄. 我国南方岩溶区和北方黄土区的大气 CO₂ 效应[J]. 第四纪研究, 2000, 20(4): 305-315. (WAN Guorjiang, WANG Shilu. Effects of the atmospheric CO₂ in karst area of southern and loess area of northern China[J]. Ouaternary Sciences, 2000, 20(4): 305-315. (in Chinese))
- [2] 赵景波.陕西长武古土壤深部风化剖面与环境研究[J].中国沙漠, 2000, 20(3): 252-255. (ZHAO Jing bo. Deep weathered section under paleosols and environment in Changwu of Shaanxi[J]. Journal of Desert Research, 2000, 20(3): 252-255. (in Chinese))
- [3] 文启忠.中国黄土地球化学[M].北京:科学出版社, 1989, 1-285.(WEN Qirzhong. Geochemistry of the Chinese Loess[M]. Beijing: Science Press, 1989, 1-285.(in Chinese))
- [4] 李晶莹,张经.黄河流域化学风化作用与大气 CO₂ 的消耗[J]. 海洋地质与第四纪地质,2003,23(2):43-49.(LI Jing ying, ZHANG Jing. Chemical weathering processes and atmospheric CO₂ consumption in the yellow river drainage basin[J]. M arine Geology & Quaternary Geology, 2003,23(2):43-49.(in Chr nese))
- [5] 陈静生, 王飞越, 何大伟. 黄河水质地球化学[J]. 地学前缘, 2006, 13(1): 58-73. (CHEN Jing sheng, WANG Fer yue, HE Darwei. Geochemistry of water quality of the yellow river basin [J]. Earth Science Frontiers, 2006, 13(1): 58-73. (in Chinese))
- [6] 温志超. 夏季黄河流域化学风化及无机碳输运研究[D].青岛: 中国海洋大学, 2009: F61. (WEN Zhrichao. Study of chemical weathering in the Huanghe drainage basin and transportation character of the dissolved carbon in summer[D]. Qingdao: Or cean University of China, 2009: F61. (in Chinese))
- [7] 徐雪梅.秋季黄河主流碳的输运特征[D].青岛:中国海洋大学,2008: F 65. (XU Xuer mei. Study of the carbon content and transportation character of the yellow river in autumn[D]. Qingdao: Ocean University of China, 2008: F 65. (in Chinese))
- [8] 苏征,张龙军,王晓亮.黄河河流水体二氧化碳分压及其影响因素分析[J].海洋科学.2005.29(4):41-44.(SU Zheng, ZHANG Long jun, WANG Xiao liang. Influencing factors of partial pressure of CO₂ in Huanghe (Yellow) river[J]. Marine Sciences, 2005, 29(4):41-44.(in Chinese))
- [9] 潘峰,张清寰,何建华.甘肃董志塬地区第四系地下水补给环境 与水化学特征演化[J].干旱区地理,2014,37(1):918.(PAN Feng, ZHANG Qing huan, HE Jian hua. Groundwater recharge environment and geochemistry evolution of the quaternary aq uifer in the Dunzhiyuan region, Gansu Province[J]. Arid Land Geography, 2014, 37(1):918.(in Chinese))
- [10] 何渊.鄂尔多斯盆地浅层地下水水化学形成规律研究[J].人民黄河, 2014, 36(8):83 86 (HE Yuan. Hydrochemical distribution and forming analysis of the shallow groundwater in Ordos desert plateau[J]. Yellow River, 2014, 36(8):83-86. (in Chinese)) DOI: 10. 3969/j. issn. 1000 1379. 2014. 08. 025
- [11] Jiang Y, Hu Y, Schirm er M. Biogeochemical controls on daily cycling of hydrochemistry and δ13C of dissolved inorganic car bon in a karst spring fed pool [J]. Journal of Hydrology,

2013, 478(0): 157-168. DOI: 10. 1016/j. jhydrol. 2012. 12. 001
[12] Zhao M, Zeng C, Liu Z, et al. Effect of different land use/land cover on karst hydrogeochemistry: A paired catchment study of Chenqi and Dengzhanhe, Puding, Guizhou, SW China[J]. Journal of Hydrology, 2010, 388 (+2): 12+130. DOI: 10. 1016/j. jhydrol. 2010. 04. 034

- [13] Liu Z, Li Q, Sun H, et al. Seasonal, diurnal and storm scale hydrochemical variations of typical epikarst springs in subtropical karst areas of SW China: Soil CO₂ and dilution effects
 [J]. Journal of Hydrology, 2007, 337(1): 207 223. DOI: : 10. 1016/j. jhydrol. 2007. 01. 034
- [14] 刘再华, Wolfgang Dreybrodt. 岩溶作用动力学与环境[M]. 北京:地质出版社, 2007: 1-236. (LIU Zaihua, Wolfgang Dreybrodt. Karst dynamics and environment[M]. Beijing: Geological Publishing House, 2007: 1-236. (in Chinese))
- [15] 袁道先.中国岩溶动力学系统[M].北京:地质出版社,2002: F275.(YUAN Daoxian. Karst dynamic system of China
 [M]. Beijing: geological publishing house, 2002: F275.(in Chinese))
- [16] 肖军,赵景波.黄土岩溶泉岩溶发育特征综合研究[J].中国沙 漠, 2006, 26(2): 180-183. (XIAO Jun, ZHAO Jing bo. Comprehensive research on development characteristics of loess karst spring[J]. Journal of Desert Research, 2006, 26(2): 180-183. (in Chinese))
- [17] 赵墨波,肖军,李瑜琴,等.陕西秦岭翠华山泉水化学成分研究
 [17] 第四纪研究, 2005, 25(5): 568 572. (ZH AO Jing bo, XF AO Jun, LI Yur qin, et al. Chemical compostion of the Cuihua mountain's spring in the Qinling mountains in Shaanxi[J]. Quaternary Sciences, 2005, 25(5): 568 572. (in Chinese))
- [18] 赵景波,袁道先,李胜利,等.陕西长安杨万村黄土岩溶泉研究
 [J].干旱区研究,2004,21(4):318322.(ZHAO Jing bo, YUAN Dao xian, LI Sheng li, et al. Study on the karst springs in Yangwan village, Chang an county, Shaanxi Province[J]. Arid Zone Research, 2004, 21(4):318322.(in Chinese)
- [19] 甘肃省地质局水文一队.甘肃省泾川、灵台、崇信三县农田供水水文地质勘查报告[R]. 1981. (Hydrogeology Team I of Gansu Bureau of Geology, Mineral Exploration and Development. Report of hydrogeological exploration for irrigation in Jingchuan, Lingtai, Chongxin counties of Gansu Province[R]. 1981. (in Chinese))
- [20] Gates J B, Scanlon B R, Mu X, et al. Impacts of soil conservar tion on groundwater recharge in the semi-arid Loess Plateau, China[J]. Hydrog ology Journal, 2011, 19(4): 865-875. DOI: 10.1007/s10040.01-0716.3
- [21] Hu ang T, Pang Z. Estimating groundwater recharge following land use change using chloride mass balance of soil profiles: a case study at Guyuan and Xifeng in the Loess Plateau of Chr na[J]. Hydrogeology journal, 2011, 19(1): 177-186. DOI: 10. 1007/s10040 010-0643 8

221

Hu ang T, Pang Z, Edmunds W M. Soil profile evolution following land-use change: implications for groundwater quantity and quality [J]. Hydrological Processes, 2013, 27(8): 1238-1252. DOI: 10. 1002/hyp. 9302

- [23] Huang T, Yang S, Liu J, et al. How much information can soil solute profiles reveal about groundwater recharge? [J]. Geo sciences Journal, 2016: 1-8. DOI: 10. 1007/s12303 015-0069 3
- [24] Liu Zai hua, Dreybrodt W., Wang Jing, et al. A possible important CO₂ sink by the global water cycle[J]. Chinese Science Bulletin, 2008, 53(3): 407-407. DOI: 10.1007/s11434-008-0096-9.
- [25] 李思亮. 喀斯特城市地下水 C, N 同位素地球化学- 污染物迁移和转化研究[D]. 北京: 中国科 学院研究 生院, 2005: 1-117. (LI Si liang. Carbon and nitrogen isotope geochemistry of karst groundwater in city: implication for contamination transportation and transformation[D]. Beijing: University of Chinese Academy of Sciences, 2005: 1-117. (in Chinese))
- [26] Leenheer JA, Malcolm RL, Mckinley PW, et al. Occurrence of dissolved organic carbon in selected ground water samples in the United States [J]. Journal Research U. S. Geological Survey, 1974, 2(3): 361-369.
- [27] Malcolm R L, Durum W H. Organic carbon and nitrogen corr centrations and annual organic carbon load of six selected rivers of the United States[R]. Organic Substances in Water, Geological Survey Water-supply Paper, 1817-F. 1976: F26
- [28] Fisher S G, Likens G E. Energy flow in Bear Brook, New Hampshire: an integrative approach to stream ecosystem metabolism [J]. Ecological monographs, 1973, 43(4): 421-439. DOI: 10. 2307/1942301
- [29] Baker C D, Bartlett P D, Farr I S, et al. Improved methods for the measurement of dissolved and particulate organic carbon in fresh water and their application to chalk streams [J]. Freshwater Biology, 1974, 4 (5): 467-481. DOI: 10. 1111/j. 1365-2427. 1974. tb 00109. x
- [30] M cdowell W H, Fisher S G. Autumnal processing of dissolved organic matter in a small woodland stream ecosystem[J]. Ecology, 1976: 561-569. DOI: 10. 2307/1936440
- [31] Neff J C, Asner G P. Dissolved organic carbon in terrestrial ecosystems: Synthesis and a model [J]. Ecosystems, 2001, 4 (1): 29 48. DOI: 10. 1007/ s100210000058
- [32] 魏秀国,李宁利,沈承德,等.西江水体有机碳含量变化及悬浮物碳同位素的意义[J].地理科学,2011,31(2):166-171.
 (WEI Xirr guo, LI Ning li, SHEN Cheng de, et al. Riverine or ganic carbon content and significance of carbon isotopic com-

position in the Xijiang River, China[J]. Scientia Geographica Sinica, 2011, 31(2): 166 171. (in Chinese))

- [33] Thurman E M. Organic geochemistry of natural waters [M].
 Springer, 1985: F 497. DOI: 10.1007/978 94 009-5095 5
- [34] 王华,张春来,杨会,等.利用稳定同位素技术研究广西桂江流 域水体中碳的来源[J].地球学报,2011,32(6):691698. (WANG Hua, ZHANG Churr lai, YANG Hui, et al. The application of stable carbon isotope to the study of carbon sources in Guijiang watershed, Guangxi[J]. Acta Geoscientia Sinica, 2011, 32(6):691698. (in Chinese))
- [35] An Z S, Huang Y S, Liu W G, et al. Multiple expansions of C4 plant biom ass in East Asia since 7 Ma coupled with strength ened mon soon circulation[J]. Geology, 2005, 33(9): 705 708. DOI: 10. 1130/G21423.1
- [36] Grossman E L. Stable carbon isotopes as indicators of microbial activity in aquifers[J]. M anual of environmental microbiology, 1997: 565-576.
- [37] 刘心彪,周斌,魏玉涛.基于环境同位素的陇东盆地地下水分析[J].干旱区研究,2009(6): 804 810.(LIU Xirr biao, ZHOU Bin, WEI Yurtao. Analysis on groundwater based on envirorr mental isotope in the Longdong basin [J]. Arid Zone Re search,2009(6): 804 810.(in Chinese))
- [38] 黄天明.土地利用变化对地下水补给和水质的影响: 以黄土高原为例[D].北京:中国科学院地球与地球物理研究所, 2011.
 (HUANG Tiarr ming. Study on groundwater recharge in typical loess plains in the Loess Plateau of China[D]. Beijing: Irr stitute of Geology and Geophysics, Chinese Academy of Scrences, 2011. (in Chinese))
- [39] Perrin A, Probst A, Probst J. Impact of nitrog enous fertilizers on carbonate dissolution in small agricultural catchments: Implications for weathering CO₂ uptake at regional and global scales[J]. Geochimica et Cosmochimica Acta. 2008, 72 (13): 3105 3123. DOI: 10. 1016/ j. gca. 2008. 04. 011
- [40] 刘再华. 岩溶作用及其碳汇强度计算的"入渗 平衡化学法", 兼论水化学径流法和溶蚀试片法[J]. 中国岩溶, 2011, 30(4): 379 382. (LIU Zai hua. "Method of maximum potential dissor lution" to calculate the intensity of karst process and the rele
 1. vant carbon sink: with discussions on methods of solute load and carbonate rock tablet test[J]. Carsologica Sinica, 2011, 30
 (4): 379 382. (in Chinese))

• 126 • 水文地质与工程地质