DOI:10.13476/j. cnki. nsbdqk. 2019.0139

张学静,王平,王田野,等. 输水条件下额济纳绿洲浅层地下水水化学特征与水位埋深关系[J]. 南水北调与水利科技,2019,17 (6):86-94. ZHANG X J, WANG P, WANG T Y, et al. Relationship between chemical characteristics of shallow groundwater and water level depth in Ejina Oasis under water conveyance conditions[J]. South-to-North Water Transfers and Water Science & Technology, 2019, 17(6):86-94. (in Chinese)

输水条件下额济纳绿洲浅层地下水 水化学特征与水位埋深关系

张学静^{1,2},王 平¹,王田野^{1,2},于静洁^{1,2},刘 啸³

(1.中国科学院 地理科学与资源研究所 陆地水循环及地表过程重点实验室,北京 100101;2.中国科学院大学,北京 100049;3.水利部发展研究中心,北京 100038)

摘要:浅层地下水水化学特征及水位埋深是干旱区地下水环境变化的重要指示,研究其时空变化对干旱区绿洲生态 环境修复及其可持续发展具有重要意义。以我国西北干旱区第二大内陆河——黑河下游额济纳绿洲为研究区,以 2017年8月水化学组分分析数据为基础,结合水化学历史分析数据(2001年9月和2009年8月)及地下水位埋深 自动监测数据,运用反距离权重(IDW)插值方法和水化学 Piper 图解法,分析了生态输水以来(2001—2017年)额济 纳绿洲地下水水化学特征和水位埋深的时空变化特征及二者间的响应关系。结果表明,在空间上,地下水位从西南 到东北逐渐降低,地下水总溶解固体(TDS)沿着地下水流向呈增加趋势。2001、2009及2017年地下水化学类型变 化不明显,分别呈 SO4 · Cl-Mg · Na,SO4 · Cl-Na · Mg,SO4 · Cl-Na · Mg;地下水中 TDS 变化较为明显,即在2001 年最高,2017年次之,2009年最低。TDS 与地下水位埋深之间呈非线性统计关系,具体表现为:水位埋深在1.5~ 3 m及 6 m 以下范围内,TDS 变化不大,稳定维持在2 000 mg/L 左右;但在 3~6 m 范围内,TDS 随地下水位埋深增 大呈一定的增加趋势。

关键词:水化学特征;地下水;额济纳绿洲;干旱区

中图分类号:P641 文献标志码:A

开放科学(资源服务)标识码(OSID)

Relationship between chemical characteristics of shallow groundwater and water level depth in Ejina Oasis under water conveyance conditions

ZHANG Xuejing^{1,2}, WANG Ping¹, WANG Tianye^{1,2}, YU Jingjie^{1,2}, LIU Xiao³

(1. Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural

Resources Research, Chinese Academy of Sciences, Beijing 100101, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Development Research Center of the Ministry of Water Resources of P. R., Beijing 100038, China) Abstract: The chemical characteristics and water level of shallow groundwater is an important indicator of groundwater environment change in the arid area. Understanding its temporal and spatial variations are of key significance for the sustainable development in arid ecosystems. The Ejina Oasis in the lower reaches of Heihe River of the second largest inland river basin of northwestern China was selected as the study area. Based on the shallow groundwater sampling and water chemical composition analysis data of August 2017, the historical hydro-geochemistry data (September 2001 and August 2009) and groundwater table depth

网络出版地址:http://kns.cnki.net/kcms/detail/13.1334.TV.20190624.1038.004.html

基金项目:国家自然科学基金(41671023;41371059;41571029);中俄(NSFC-RFBR)项目(41811530084;18-55-53025 ГФЕН_а)

作者简介:张学静(1995—),女,宁夏固原人,主要从事水文与水资源研究。E-mail:zhangxj.17s@igsnrr.ac.cn

收稿日期:2019-04-30 修回日期:2019-05-26 网络出版时间:2019-06-024

通信作者:王 平(1979—),男,安徽肥西人,副研究员,博士,主要从事干旱区地下水与生态水文过程研究。E-mail:wangping@igsnrr. ac. cn

automatic monitoring data, the tempo-spatial variations of shallow groundwater's hydro-geochemistry in Ejina Oasis and the response to groundwater depth were analyzed using the Inverse Distance Weight (IDW) interpolation method and the Piper graphic method. The results showed that the shallow groundwater level in the Ejina Oasis gradually decreased from southwest to northeast; however, groundwater's TDS, in contrast, gradually increased in this direction. There was no obvious change in groundwater chemical types in 2001,2009 and 2017, and the type of water chemistry in 2001,2009 and 2017 were SO₄ • Cl-Mg • Na, SO₄ • Cl-Na • Mg, SO₄ • Cl-Na • Mg, respectively. The change of TDS in groundwater was more obvious, and the highest TDS was observed in 2001, followed by 2017, while the lowest was detected in 2009. A nonlinear relationship between TDS and groundwater table depth was detected. The water table depth ranged 1. 5-3 m and below 6 m, TDS did not change much with a value of approximately 2 000 mg/L; however, at 3-6 m, TDS increased when the groundwater table depth was getting larger. **Key words**; hydro-geochemical characteristics; groundwater; Ejina Oasis; arid area

额济纳绿洲位于中国西北极端干旱区第二大内 陆河-黑河流域下游,沿河道两岸发育的绿洲是中 国北方重要的生态屏障。该地区气候干旱,降水极 少,多年平均降水量不足 50 mm,年均潜在蒸发量 却高达1 500 mm^[1];地表水资源匮乏,黑河是流入 该地区的唯一地表河流。浅层地下水是该地区重要 的水资源[2],也是维持额济纳绿洲植被生长的关 键[3]。额济纳绿洲地下水资源主要依赖于黑河季节 性过水渗漏补给[4]。20世纪50年代至20世纪90 年代,由于黑河中游地区地表水资源的过度开发消 耗,导致下游地表来水量锐减^[5]。受此影响,下游 区域地下水位显著下降,进而引发了植被退化,绿 洲区面积萎缩,沙尘暴出现频率增加,荒漠化加剧 等一系列生态环境问题[6-9]。与此同时,水资源短 缺和环境恶化进一步限制了当地社会经济发展。 为恢复下游地区持续下降的地下水位,遏制和修 复退化的生态环境,国务院于2000年启动了黑河 生态输水工程。

已有研究结果表明,额济纳绿洲生态环境的恢 复主要依赖于浅层地下水环境的改善,特别是地 下水位回升与水质改善[11,15-18]。围绕额济纳绿洲 浅层地下水环境变化及其对绿洲植被的影响,近 年来国内外学者开展了对水位或水质变化分 析[10-12]以及植被空间分布格局对地下水位[13]或盐 分[14]响应关系的研究。综合前人的研究结果得 出,生态输水以来额济纳绿洲浅层地下水位整体 上升[15-16],地下水盐度呈现逐年降低趋势[11];从补 给区到排泄区,地下水盐度和水化学类型呈明显 带状分布[10]。浅层地下水的主要离子质量浓度、 总溶解固体(TDS)含量及水化学类型具有一定的 时间和空间异质性^[17],其中 TDS 和主要离子浓度 沿着地下水流向逐渐增大[18]。上述研究成果多以 2000-2010年的野外实验与观测数据为基础。 2010年以来,额济纳绿洲水文情势与生态环境发生 了明显变化:一方面,进入黑河下游额济纳绿洲的地 表径流量整体呈增加趋势,特别是 2016 年与 2017 年;另一方面,额济纳绿洲范围也呈现一定程度的扩 张趋势。然而,针对 2010 年至今地下水环境变化的 研究相对较少。

本文基于前人的研究基础,综合 2001 年 9 月、 2009 年 8 月和 2017 年 8 月三期地下水水化学分析 数据及 2010—2017 年地下水位埋深高频自动监测 数据(30 min/次),运用 Piper 图解法、反距离权重 (IDW)插值法和时序分析等方法,分析额济纳绿洲 地下水水化学组分的时空变化特征和地下水位的年 际变化趋势,为评估生态输水对额济纳绿洲地下水 环境的影响提供依据;并进一步探析地下水 TDS 与 水位埋深之间的空间响应关系,实现对额济纳绿洲 地下水盐分动态的分区,为揭示干旱区内陆河下游 典型区地下水变化提供研究案例。

1 材料与方法

1.1 研究区概况

额济纳绿洲位于中国内蒙古自治区西部,南起 狼心山,北至东、西居延海,地理坐标为100°10′~ 101°20′E,41°00′~42°40′N^[16](图1)。额济纳绿洲 是由辐射扇状水系发育而成的广阔内陆河三角洲, 地势低平,海拔高度为820~1127 m,地面坡降 1‰~3‰,总体上自西南向东北缓慢倾斜^[2]。额济 纳绿洲处于极端干旱气候区,年均气温9.09℃,最 高气温27.05℃,最低气温-11.23℃^[19]。多年平 均降水量42 mm,最大年降水量103 mm,最小年降 水量7 mm,年蒸发能力1400~1500 mm^[20,22]。唯 一地表河流黑河自狼心山处分为额济纳东河与额 济纳西河,最终分别注入尾闾湖泊东居延海和西 居延海^[20-21]。该地区潜水含水层主要为第四系含 水层,岩性结构较为单一,主要由细砂、粉砂、黏土 和亚黏土组成,由西南向东北颗粒逐渐变细,含水 层的富水性逐渐变弱,水位埋深逐渐增大^[2]。额 济纳绿洲的土壤属地带性灰棕荒漠土和石膏性灰 棕荒漠土,天然绿洲内多是草甸土、盐化草甸土、 风沙土等,局部有盐化沼泽土和沼泽盐土出现。植物种类贫乏,以旱生、超旱生、耐盐碱的亚洲中部荒 漠成分占优势,常见植被类型有胡杨、柽柳、沙枣、梭 梭等^[23]。

图 1 研究区地下水观测点及 2001、2009、2017 年采样点分布 Fig. 1 Location of groundwater observation wells and the points of water samples in 2001,2009 and 2017

1.2 数据来源

为分析生态输水以来额济纳绿洲地下水水化学 组分时空变化规律,选取 2001 年 9 月上旬,2009 年 8 月下旬和 2017 年 8 月下旬 3 次地下水野外采样的水 化学分析数据为基础,采样点位置见图 1。其中,2001 年 9 月上旬采集水样 58 个,2009 年 8 月下旬采集水 样 32 个,2017 年 8 月下旬采集水样 33 个,水样主要 取自当地抽水灌溉的农田机井与民用水井。

此外,从研究区已布设的地下水长期监测网 中^[16]选取了9眼典型位置观测井(Π_1,Π_3,Π_7,Π_1 , N_2, V_2, V_1, VI_3),分析该地区 2010—2017 年地下水 位埋深变化。所选观测井位置见图 1,其中 Π_1 观测 井位于狼心山水文站; Π_1, Π_1 和 Π_7 分别位于西河 和东河河岸带; Π_3 位于戈壁带; N_2, V_2, V_1, VI_3 位 于绿洲区(天然绿洲区和人工绿洲区)。

1.3 分析方法

对所采集的地下水水样进行室内水化学离子分析,该实验在中国科学院地理科学与资源研究所理

化分析实验室完成。其中:主要的阴阳离子(Na⁺ + K⁺、Ca²⁺、Mg²⁺、Cl⁻、SO₄²⁻、NO₃⁻、NO₂⁻、F⁻等) 采用电感耦合等离子体光谱仪(ICP-OES)测定; HCO₃⁻采用滴定法测定。

根据测定的阴阳离子质量浓度,计算 TDS(total dissolved solids, TDS),也称矿化度,其值常以 105~110 ℃下将水分蒸干后所留固体的量来表征, 实践中多以主要阴、阳离子质量浓度之和来计算,即 TDS=Na⁺+K⁺+Ca²⁺+Mg²⁺+Cl⁻+SO₄²⁻+ 1/2HCO₃⁻(由于:CO₃²⁻质量浓度极小,甚至为0, 所以忽略不计;蒸干过程有将近一半的 HCO₃⁻被 蒸发消耗,所以上述公式中仅留存一半质量浓度的 HCO₃⁻)^[24]。根据 TDS 值,可以将地下水划分为淡 水、微咸水、咸水、盐水和卤水,即 TDS≤1 000 mg/L 时,属于淡水;1 000 mg/L<TDS≤3 000 mg/L 时,属 于微咸水;3 000 mg/L<TDS≤10 000 mg/L 时,属于 减水;10 000 mg/L<TDS≤50 000 mg/L 时,属于盐 水;TDS≥50 000 mg/L 时,属于卤水^[25]。 为了对比分析 2001、2009 和 2017 年额济纳绿 洲的地下水水化学特征的时空变化规律,本研究采 用反距离权重(IDW)方法对点尺度上的 TDS 和主 要离子浓度进行空间插值。IDW 是空间统计中最 常用的内插方法之一,通过周围临近点的已知值的 线性权重组合来估算未知值,两点间的距离越近,其 值越相似^[26]。利用空间插值后的 TDS 和主要离子 浓度值对比分析地下水水化学特征的时空变化规 律。同时,对 TDS 和地下水位插值数据在空间上进 行重采样(空间分辨率为 100 m),获取同一时期的 TDS 和地下水位埋深二者间的统计关系。

地下水水化学成分以 Piper 三线图来表示。该 图由1个菱形和2个等边三角形组成,以6种阴阳 离子(HCO₃⁻、SO₄²⁻、Cl⁻、Ca²⁺、Mg²⁺、Na⁺+K⁺) 毫克当量百分数为基础,首先,通过阴阳离子质量浓 度确定水样在两个三角形上的位置,然后过该点作 平行于刻度线的延伸线,在菱形中的交点即可表示 地下水的化学特征^[24,27]。

2 结果与分析

2.1 输水对地下水位的影响

2.1.1 地下水流向

以2017年地下水位巡测数据为基础,对地下水 位进行空间插值,获得区域整体地下水位空间分布 特征(图2)。整体上,从上段狼心山至下段居延海 方向,地下水位逐渐降低;地下水流向沿着西南至东 北方向,与河流流向保持一致,这与前人的实测资料 以及实验模拟结果相符合^[8]。截至2017年8月,区

图 2 2017 年 8 月地下水位空间分布特征 Fig. 2 Spatial distribution characteristics of groundwater level in August,2017

域平均地下水位约 943 m,其中地下水位最高值约 为1 010 m,最低值约为 879 m。受河道渗漏补给和 相邻盆地地下水侧向补给影响,额济纳绿洲西南地 区水位较高。额济纳绿洲尾闾湖地区及下游农灌区 地下水位则相对较低。特别是近年来随着地下水开 采强度的增加,农灌区地下水位下降明显,甚至在局 部区域已经形成降落漏斗(赛汉陶来)。

2.1.2 地下水位时空变化特征

地下水位变化是反应地下水储量时空动态最直 接的指示因子。如图 3(a)至 3(e)所示,时间尺度 上,随着黑河生态输水量逐年增加(图 4),各观测点 水位埋深呈逐年变浅趋势。而在空间尺度上,沿着 河流方向,位于河流上段观测井的水位埋深比下段 观测井浅,例如,位于额济纳西河河岸的观测井 [] 水位埋深比Ш1水位埋深浅(图 3(c))。垂直河道方 向上,河岸带观测井水位埋深比戈壁带的要浅。例 $_{1}, _{2}, _{2}, _{1}, _{1}, _{2}, _{3}, _{1}, _{2$ (图 1),从西向东依次跨越额济纳西河河岸带、戈壁 带和额济纳东河河岸带。对比这三个观测井的水位 埋深变化曲线(图 3(d))可以发现,河岸带观测井 ([]1 和[]7)水位埋深较浅,水位埋深在 1.5~2.5 m;而 位于戈壁带的观测井(Ⅱ₃)水位埋深在 3.5~4 m, 比河岸带观测井的水位埋深大。该现象源于河岸带 观测井更靠近河道,受河水补给较多,地下水水位回 升较快;位于戈壁带的观测井远离河道,受到河道渗 漏补给影响小,水位恢复较弱。

位于绿洲区的 \mathbb{N}_2 、 \mathbb{V}_2 、 \mathbb{N}_1 、 \mathbb{M}_3 观测井的水位 埋深变化具有一定的空间差异性(图 3(e))。 \mathbb{N}_2 、 \mathbb{N}_1 和 \mathbb{V}_2 观测井位于人工绿洲区,其中, \mathbb{N}_2 、 \mathbb{N}_1 观 测井的多年水位埋深为 1~3 m; 而 \mathbb{V}_2 观测井的多 年水位埋深在 3~5 m。结合野外调查发现,由于受 到地下水开采影响, \mathbb{V}_2 观测井的水位埋深比 \mathbb{N}_2 和 \mathbb{N}_1 观测井大。 \mathbb{M}_3 观测井位于天然绿洲区,远离河 道,地下水补给少且植被蒸散大,从而导致该井水位 埋深较其它 3 眼井大,多年水位埋深在 5~9 m。但 该观测井地下水位在 2014 年后有所回升,根据野外 实地调查发现,该现象与天然绿洲区春季河水漫灌 有关。

2.2 输水对地下水化学特征的影响

2.2.1 主要离子浓度变化

2001,2009,2017 年三期水样的主要阴阳离子 (Na⁺+K⁺、Ca²⁺、Mg²⁺、Cl⁻、SO₄²⁻、HCO₃⁻)的平均 质量浓度见表 1。对比分析发现,从 2001 年至 2017 年,所有的阴阳离子含量均呈现先减小后增大的变 化趋势。由表1可见,2017年水样中各主要离子的 平均质量浓度均比2001年小,即生态输水18年来, 主要离子质量浓度整体上是减小的。由此说明黑河 生态输水不仅引起额济纳绿洲区域整体地下水位抬升,而且对区域地下水的水质起到了一定的改善 作用。

图 3 2010—2017 年额济纳绿洲典型观测井水位埋深变化曲线 Fig. 3 Depth variation curve of water level in typical observation wells of Ejina Oasis from 2010 to 2017

表 1 2001,2009 和 2017 年巡测水样水化学组分均值 Tab. 1 Average values of the chemical composition of water samples in 2001,2009 and 2017

						単位:mg/L		
年份	• Na ⁺ +K ⁺	Mg^{2+}	Ca ²⁺	Cl-	SO_4^{2-}	HCO3-	TDS	
2001	562.00	241.00	136.00	637.00	1 387.00	442.00	3 184.00	
2009	338.30	80.81	69.96	269.60	647 . 10	238.10	1 525.00	
2017	494.90	158.30	113.80	387.00	1 046.00	331.50	2 575.00	

2.2.2 TDS 空间分布特征

利用空间插值方法得到了区域地下水 TDS 的 空间分布,见图 5。在空间尺度上,TDS 沿着地下水 的流向呈现逐渐增大的趋势。综合三期地下水 TDS 的空间分布图可以看出:在河流上段,浅层地 下水 TDS 多小于1 000 mg/L,属于淡水;额济纳东、 西河中段地区,浅层地下水 TDS 多介于1 000~ 3 000 mg/L,属于微咸水;河流下段地区,地下水 TDS 多大于3 000 mg/L,属于咸水,尤其在 2001 年,下段局部地区地下水 TDS 甚至高于10 000 mg/L。 地下水 TDS 的空间动态变化主要归因于区域地下 水侧向流动和垂向蒸散发的共同作用。沿着地下水 流方向,盐分随地下径流过程不断累积,而垂向蒸散 发作用则进一步加剧了盐分累积过程,所以越往河 道的下段,地下水 TDS 越大。

2.2.3 TDS 时间变化特征

随着自然环境的改变和人为活动的影响,地下水 TDS 随之发生变化,见表1。2001、2009、2017 年 三期地下水样的平均 TDS 分别为3 184、1 525、 2 575 mg/L。结合图 6 可知,与 2001 年相比,2009 年河道中上段地区地下水 TDS 呈减小或稳定趋势; 下段大部分地区 TDS 减小(图 6(a))。然而,与 2009 年相比,2017 年地下水 TDS 整体呈增大态势(图 6 (b)),其中下游农灌区地下水 TDS 增大尤为明显。

(a) 2001-2009年

(e) 2001-2017年

由于该地区常年干旱,降水极少,地下水主要靠 河流生态输水补给。随着 2000-2017 年黑河生态 输水量的逐年增加(图 4),额济纳绿洲浅层地下水 获得的河道渗漏补给量也逐年增大,除部分人类活 动影响区域外,其余地区浅层地下水中 TDS 整体上 是减小的(图 6(c))。从时间上来看,2001-2017年 地下水 TDS 呈非单调变化趋势,即浅层地下水中 TDS呈现先减后增的变化趋势。其可能的原因是, 在 2001-2009 生态输水初期,生态来水量的急剧增 加,地下水得到河水的补给,地下水中盐分得到稀 释,TDS呈减小态势。随着来水量的不断增加,在 2009-2017年,地下水蒸发量也随之增加,此时,地 下水中的盐分缓慢累积,从而导致 TDS 逐渐增大。

2.3 浅层地下水水化学类型变化特征

如图 7 所示,根据 Piper 图右下角阴离子三角 形可知,2001、2009和2017年所有的水样都落在4 区,表明该地区浅层地下水中强酸根大于弱酸根。 根据左下角阳离子三角形可知,2001年水样多分布 在1区,说明碱土金属离子大于碱金属离子。该年水 样中阳离子以 Mg^{2+} 为主,其次是 $Na^{+} + K^{+}$;阴离 子以 SO42-为主, Cl-次之。结合菱形图中水样的分 布位置可知,2001年地下水样水化学类型主要为 SO₄ • Cl-Mg • Na。2009 年大部分水样落在 2 区, 表明碱金属离子大于碱土金属离子。水样中 Na++ K⁺质量浓度较 2001 年有所增加, 而阴离子仍以 SO4²⁻为主,水化学类型主要为 SO4 · Cl-Na · Mg。 2017年水样落在1、2区的数量相差不多,说明地下 水中碱金属离子和碱土金属离子质量浓度相近。 2017年较前期两年,水样中 SO42-质量浓度明显增 加,阳离子以 Na⁺、Mg²⁺为主,则水化学类型主要 为 SO₄ • Cl-Na • Mg。

当地下水中阴离子以 SO4²⁻ 为主,阳离子以 Na⁺+K⁺为主时,说明TDS处于中等水平;当阴离子 以 SO4²⁻为主, 阳离子以 Mg²⁺为主时, 说明 TDS 处 于偏高水平^[23]。由此说明 2001 年水样 TDS 偏高,水 质较差。与 2001 年相比,2009 和 2017 年地下水水 样 TDS 处于中等水平,地下水盐分含量有所降低。

- 图 7 2001、2009 和 2017 年额济纳绿洲地下水样 piper 图 Fig. 7 Piper diagram of groundwater sample in the Ejina Oasis in 2001,2009 and 2017
- 2.4 TDS和地下水位埋深的统计关系

浅层地下水 TDS 动态主要受区域地下水侧向

补给、河流渗漏补给和地下水蒸发浓缩等多重影响, 具有显著的空间差异性(图 8)。河岸带地区,地下 水位埋深浅,在1.5~3 m,地下水易受到河道渗漏 补给,受河流淡水周期性稀释,地下水更新快,水质 较好且稳定,TDS 多在2 000 mg/L 以下。

戈壁带地下水位多处于中埋深区 3~6 m,由 于距离河道较远,受河流的渗漏补给较弱,但是水 位埋深在蒸发极限埋深 6 m^[8]以上,受蒸发浓缩作 用影响,地下水盐分含量较高且空间差异性较大, 多在1 000~7 000 mg/L。前人的研究结果^[16]表 明,人工绿洲区平均地下水位埋深为 4.6 m,恰好 处于地下水位中埋区范围,受地下水开采和河水 漫灌的双重影响,地下水位和盐分的动态变化较 为强烈。

在地下水位深埋区大于 6 m,水位埋深位于蒸 发极限埋深以下,地下水受地表水入渗补给和蒸发 浓缩作用的影响微弱。在此情况下,地下水动态主 要受区域地下水流场控制,更新速度缓慢,盐分含量 较为稳定,大多在1 000~3 000 mg/L。天然绿洲区 的地下水位埋深相对较深,平均水位埋深为 8.6 m^[16],正是属于地下水深埋区,地下水更新速度 慢,地下水盐分较高。

值得注意的是,2009 年地下水样中 TDS 多在 2 000 mg/L 以下,并未呈现出随地下水位埋深变化 的态势。主要是因为 2009 年的采样点多分布在河 岸带,样本盐分整体偏低,导致插值结果具有典型河 岸带特征,对区域整体的代表性有所欠缺。这也可 能是导致 2009 年整体 TDS 偏小的一个原因。

3 讨 论

地下水水化学组分变化受环境因素和人类活动

共同影响。额济纳绿洲地处于西北极端干旱气候 区,降水极少,自然累积加上强烈的蒸发浓缩作用导 致地下水 TDS 逐渐增大。该地区水化学类型主要

• 92 • 生态与环境

以 SO₄ • Cl 型为主,由此也表征蒸发浓缩作用是该 地区水化学特征变化的主导因素。额济纳绿洲地下 水主要受黑河地表水的季节性渗漏补给,受地表水 和地下水相互混合作用的影响,地下水水化学特征 表现出明显的时空差异性。随着黑河生态输水量的 逐年增加,区域地下水位整体得以抬升,盐分整体得 以减小。但沿着河道方向,随着河道径流量的减少, 地下水位埋深和盐分含量均随之逐渐增大。垂直河 道方向上,在近河岸带受河水侧渗补给影响,地下水 位埋深变浅,盐分也相应的呈现一个淡化带;随着距 离输水河道越远,地下水位埋深越大,目盐分浓度越 大。除此之外,该地区地下水水化学特征还受人类 活动的影响。地下水开采以及东河下游农田灌溉用 水的回渗补给改变了地下水径流条件,进而影响地 表水和地下水的交互作用,造成局部地下水水化学 特征发生变化。

需要指出的是,本文仅基于3期地下水水样的 水化学分析数据,对研究区的地下水水位和水化学 离子组分时空变化特征进行分析,并从统计上构建 了地下水盐分(TDS)与地下水位埋深之间的关系。 然而,本文所采用的地下水采样点空间分布不均且 地下水水化学分析数据有限,因此该研究仍存在一 定的局限性。在后续的研究中,需要通过优化野外 采样设计方案,开展多年水样巡采和分析工作,揭示 典型干旱区内陆河下游地区地下水动态及其控制因 素,完善地下水 TDS 与水位埋深两者之间的关系。 此外,可以借助地下水流数值模型模拟分析地下水 和河水的交换量,刻画地表水和地下水的相互转化 过程,定量分析河水渗漏补给对浅层地下水的影响, 并开展干旱区内陆河下游"河流-含水层"系统水岩 相互作用的基础研究。

4 结 论

本文分析了在黑河生态输水条件下,额济纳绿 洲浅层地下水水化学组分的时空变化特征及其与地 下水位埋深之间的关系。主要结论如下。

(1) 空间上,沿着河道方向,随着河流渗漏补给 量的减小,地下水位逐渐降低,TDS则相应增大。 垂直河道方向,河岸带的水位埋深浅,水质好;戈壁 带的水位埋深大,水质较差。

(2)时间上,平均地下水位埋深逐年变浅。反 映地下水盐分含量的 TDS 在 2001 年最高,2009 年 最低,2017 年次之。该三年地下水水化学类型分别 呈 SO₄ • Cl-Mg • Na, SO₄ • Cl-Na • Mg, SO₄ • Cl-Na • Mg,差异不明显。 (3)随着水位埋深的变化,TDS 与地下水位埋 深两者间呈现非线性响应关系,体现显著的空间差 异性。河岸带浅埋区 1.5~3 m,受河水稀释作用影 响,TDS 较小;水位埋深为 3~6 m 的中埋区,受地 下水侧向补给与潜水蒸发双重影响,TDS 在空间上 具有较大差异性;当水位埋深大于 6 m 时,由于地 下水蒸发浓缩作用较弱,TDS 较小且较为稳定。

致谢:感谢中国科学院地理科学与资源研究所 张一驰与杜朝阳两位老师在本文写作过程中给予的 悉心指导、支持和帮助,感谢匿名审稿人专业且富有 建设性的修改意见,在此一并表示衷心的感谢!

参考文献(References):

- [1] WANG P, YU J J, ZHANG Y C, et al. Groundwater recharge and hydrogeochemical evolution in the Ejina basin, northwest China [J]. Journal of Hydrology, 2013,476:72-86.
- [2] 武选民,史生胜,黎志恒,等.西北黑河下游额济纳盆地 地下水系统研究(上)[J].水文地质工程地质,2002(1);
 16-20.(WU X M, SHI S S, LI Z H, et al. Study on groundwater system in Ejina basin in the lower reaches of the Heihe river in northwest China (I)[J]. Hydrogeology and Engineering Geology,2002(1):16-20. (in Chinese))
- [3] YU T F,FENG Q,SI J H,et al. Hydraulic redistribution of soil water by roots of two desert riparian phreatophytes in northwest China's extremely arid region[J]. Plant and Soil,2013,372(1-2),297-308.
- [4] 闵雷雷. 干旱区间歇性河流河水渗漏观测与模拟——以额济纳东河为例[D]. 北京:中国科学院大学, 2013. (MIN L L. Experimental and numerical study on the river water leakage in an intermittent river in arid area: A case study of Ejina Donghe river[D]. Beijing: University of Chinese Academy of Sciences, 2013. (in Chinese))
- [5] 肖生春,肖洪浪.近百年来人类活动对黑河流域水环境的影响[J]. 干旱区资源与环境,2004,18(3):57-62.
 (XIAO S C,XIAO H L. The impact of human activity on the water environment of heiHe water basin in last century[J]. Journal of Arid Resources and Environment, 2004,18(3):57-62. (in Chinese))
- [6] 胡广录,赵文智.恢复生态地下水位的需水量及恢复方案研究——以额济纳盆地天然植被为例[J].干旱区研究,2009,26(1):94-101.(HUGL,ZHAOWZ.The demanded water volume for restoring natural groundwater levels: A case study on natural vegetation in the Erjina basin [J]. Arid Zone Research,2009,26(1):94-101.(in Chinese))
- [7] 徐永亮,于静洁,王平,等.额济纳三角洲地下水位年内 动态变化特征分类分析[J].干旱区资源与环境,2013, 27(4):135-140.(XU Y L,YU J J,WANG P, et al.

Classification of annual dynamic of groundwater depth in Ejina delta [J]. Journal of Arid Resources and Environment,2013,27(4):135-140. (in Chinese))

- [8] 徐永亮,于静洁,张一驰,等. 生态输水期间额济纳绿洲 区地下水动态数值模拟[J].水文地质工程地质,2014, 41(4):11-18. (XU Y L,YU J J,ZHANG Y C, et al. Groundwater dynamic numerical simulation in the Ejina Oasis in an ecological water conveyance period [J]. Hydrogeology and Engineering Geology, 2014,41 (4):11-18. (in Chinese)) DOI:10.16030/j. cnki. issn. 1000-3665.2014.04.006.
- [9] JIN X M, HU G C, LI W M. Hysteresis effect of runoff of the heihe river on vegetation cover in the Ejina Oasis in northwestern China [J]. Earth Science Frontiers, 2008,15(4):198-203.
- [10] WEN X, WU Y, SU J, et al. Hydrochemical characteristics and salinity of groundwater in the Ejina Basin, Northwestern China[J]. Environmental Geology, 2005, 48(6):665-675.
- [11] WANG P, YU J J, ZHANG Y C, et al. Impacts of environmental flow controls on the water table and groundwater chemistry in the Ejina Delta, northwesterm China [J]. Environmental Earth Sciences, 2011, 64 (1):15-24.
- [12] SU Y H, FENG Q, ZHU G F, et al. Identification and evolution of groundwater chemistry in the Ejin sub-basin of the Heihe River, Northwest China[J]. Pedosphere, 2007, 17(3): 331-342.
- [13] WANG P, ZHANG Y C, YU J J, et al. Vegetation dynamics induced by groundwater fluctuations in the lower Heihe River basin, northwestern China [J]. Journal of Plant Ecology, 2011, 4(1-2): 77-90.
- [14] ZHU J T, YU J J, WANG P, et al. Distribution patterns of groundwater-dependent vegetation species diversity and their relationship to groundwater attributes in northwestern China[J]. Ecohydrology, 2013, 6(2):191-200.
- [15] 刘莉莉,刘静,王开云,等.额济纳绿洲沿河区地下水 位埋深对生态输水的响应研究[J].内蒙古农业大学 学报(自然科学版),2008,29(2):58-63.(LIU L L, LIU J,WANG K Y,et al. Study on groundwater level responses of water transfer along rivers area in Ejina Oasis [J]. Journal of Inner Mongolia Agricultural University,2008,29(2):58-63.(in Chinese))
- [16] 王平,于静洁,闵雷雷,等. 额济纳绿洲浅层地下水动态监测研究及其进展[J]. 第四纪研究,2014,34(5):982-993. (WANG P,YU J J,MIN L L,et al. Groundwater regime and its driving forces in the Ejina Oasis[J]. Quaternary Sciences, 2014, 34(5):982-993. (in Chinese)) DOI:10.3969/j.issn. 1001-7410. 2014. 05. 08.
- [17] SI J H, FENG Q, WEN X H, et al. Major ion chemistry of groundwater in the extreme arid region northwest China[J]. Environmental Geology, 2009, 57:1079-1087.

- [18] 王丹丹,于静洁,王平,等. 额济纳三角洲浅层地下水 化学特征及其影响因素[J]. 南水北调与水利科技, 2013,11(4):51-55,66. (WANG D D, YU J J, WANG P, et al. Shallow groundwater chemistry characteristics and their controlling factors in the Ejina Delta [J]. South-to-North Water Transfers and Water Science and Technology, 2013, 11(4):51-55,66. (in Chinese))
- [19] WANG P, POZDNIAKOV S P, VASILEVSKIY P Y. Estimating groundwater-ephemeral stream exchange in hyper-arid environments: Field experiments and numerical simulations[J]. Journal of Hydrology, 2017(555): 68-79. DOI. org/10. 1016/j. jhydrol. 2017. 10. 004.
- [20] WANG P, YU J J, POZDNIAKOV S P, et al. Shallow groundwater dynamics and its driving forces in extremely arid areas: a case study of the lower Heihe River in northwestern China[J]. Hydrological Processes, 2014, 28 (3):1539-1553. DOI:10.1002/hyp.9682.
- [21] 王平.西北干旱区间歇性河流与含水层水量交换研究 进展与展望[J].地理科学进展,2018,37(2):183-197. (WANG P. Progress and prospect of research on water exchange between intermittent rivers and aquifers in arid regions of northwestern China[J]. Progress in Geography,2018,37(2):183-197. (in Chinese)) DOI:10.18306/dlkxjz.2018.02.002.
- [22] LIU X, YU J J, WANG P, et al. Lake evaporation in a hyper-arid environment, northwest of China-measurement and estimation[J]. Water, 2016, 8(11): 527-548. DOI: 10.3390/w8110527.
- [23] 朱军涛,于静洁,王平,等. 额济纳荒漠绿洲植物群落 数量分类及其与地下水关系分析[J]. 植物生态学报, 2011,35(5):480-489. (ZHU J T,YU J J,WANG P, et al. Quantitative classification and analysis of relationships between plant communities and their groundwater environment in the Ejin Desert Oasis of China[J]. Chinese Journal of Plant Ecology, 2011, 35 (5):480-489. (in Chinese))
- [24] 钱会,马致远,李培月.水文地球化学[M].北京:地质 出版社,2012:1-251.(QIAN H,MA Z Y,LI P Y. Hydrogeochemistry[M]. Beijing: Geological Publishing House,2012:1-251.(in Chinese))
- [25] 张人权,梁杏,靳孟贵,等.水文地质学基础[M].北京: 地质出版社,2011;1-199.(ZHANG R Q,LIANG X,JIN M G, et al. Hydrogeological Foundation[M]. Beijing: Geological Publishing House,2011;1-199.(in Chinese))
- [26] 李新,程国栋,卢玲.空间内插方法比较[J]. 地球科学 进展,2000,15(3);260-265. (LI X,CHENG G D,LU L. Comparison of spatial interpolation methods[J]. Advance in Earth Sciences,2000,15(3);260-265. (in Chinese))
- [27] PIPER A M. A graphic procedure in the geochemical interpretations of water analyses[J]. Transactions of the American Geophysical Union, 1944, 25:914-923.