DOI: 10.13476/j.cnki.nsbdqk.2022.0102

周炜,翁白莎,严登华,等. 怒江源区季节冻土短历时冻融事件评价[J]. 南水北调与水利科技(中英文), 2022, 20(5): 1027-1040. ZHOU W, WENG B S, YAN D H, et al. Evaluation for short-duration freeze-thaw events of seasonally frozen soil in the headstreams of Nujiang River[J]. South-to-North Water Transfers and Water Science & Technology, 2022, 20(5): 1027-1040. (in Chinese)

怒江源区季节冻土短历时冻融事件评价

周炜^{1,2},翁白莎^{2,3},严登华^{2,3},栾清华⁴

(1.河北工程大学河北省智慧水利重点实验室,河北 邯郸 056038;2.中国水利水电科学研究院 流域水循环模拟与调控国家重 点实验室,北京 100038;3.中国水利水电科学研究院内蒙古阴山北麓草原生态水文国家野外科学观测研究站,呼和浩特 010020;4.河海大学农业科学与工程学院,南京 210098)

摘要:为探究怒江源区季节冻土的冻融特性,选取源区4个典型试验场5cm表层土壤中发生的短历时冻融事件作为研究对象,明确事件内涵、提出事件具体判别方法并对事件发生的特性进行评价。评价内容由起止时间、总历时、总次数、循环频率、强度共5项组成。其中在强度评价,采用Copula函数法联合温差、湿差、历时3个单一指数构建更全面高效的综合指数,并针对冻结和冻融两个不同的过程分别进行评价。研究表明:怒江源区不同地理位置的短历时冻融事件特性具有差异,中海拔区(4500~5000 m.a.s.l.)的事件比低海拔区(<4500 m.a.s.l.)和高海拔区(>5000 m.a.s.l.)的事件呈现出总历时更长、总次数更多、循环频率更高、累加强度更大的特征规律;高频或高强的事件能够极大影响甚至破环土壤环境,对此更应注重怒江源区北部区域的冻融监测和防护;冻结和冻融是两个强度效应不同的过程,分别评价可避免强度被削弱的问题。研究成果有利于明晰高原寒区季节冻土冻结及融化的特性,进而体现短历时冻融事件的影响,为源区水土保持、冻胀与融塌危害防控提供支撑。 关键词:季节冻土;冻融事件;Copula函数;怒江源区

中图分类号:TV213;S152 文献标志码:A 开放科学(资源服务)标识码(OSID):

土壤冻融事件是一次土壤中的水分发生冻结和 融化的过程^[1-2],多次连续发生的冻融事件形成冻融 循环现象,并且能在广袤地域的不同地区间演变成 不同特性的冻融格局。冻融事件频发能够极大地 改变土壤理化性质,影响地表-大气之间物质与能量 的交换和平衡,甚至形成冻融侵蚀和泥流灾害、造 成冻融土地干旱和荒漠化等问题^[3]。青藏高原是地 势地貌和水文气象都极特殊和复杂的地域,具有海 拔高、地势起伏大、气象骤变等特点^[4]。除冰川和 湖泊外,高原季节冻土覆盖面积占 56%^[5],分布广泛, 为冻融事件发生提供了重要场所。在气候变暖影 响下,高原土壤冻融事件在起止时间、历时、发生频 次等特性上均发生了变化且空间差异大。因此,研 究高原高寒区冻融事件特性、演变规律及其影响具 有重要的科学意义和应用价值。

冻融事件因形成的驱动条件不同,类型也不同, 包括:①由季节转换驱动的事件,完成一次需历时 一年,在年内历经冻结过程期(秋入冬)、完全冻结 期(冬季)、融化过程期(冬入春)、完全融化期(夏季) 4个时期^[6],在多年间连续形成年冻融循环;②由昼 夜变换驱动的事件,完成一次需历时一日或数日(因 次日白天气温仍较低而未融),集中发生在冻结过 程期和融化过程期^[7],连续形成日冻融循环;③由高 原随机天气(气温骤降转阴、降雪降雹)驱动的事件, 完成一次只需数小时,在土壤表层更易发生和常见。 过往研究中,对①的特性及影响关注较多^[8-10],对②

收稿日期: 2022-02-26 修回日期: 2022-06-02 网络出版时间: 2022-06-07
 网络出版地址: https://kns.cnki.net/kcms/detail/13.1430.TV.20220607.1424.002.html
 基金项目: 国家自然科学基金项目 (52022110; 51879276); 第二次青藏高原综合科学考察研究 (2019QZKK0207); 中国水科院基本科研业务费 项目 (MK0145B022021)

作者简介:周炜 (1995—), 男, 浙江绍兴人, 主要从事水文水资源研究。E-mail: zw13007615818@163.com

通信作者:翁白莎(1986—),女,福建泉州人,正高级工程师,主要从事极端水文及生态环境效应研究。E-mail:wengbs@iwhr.com

的研究[11] 缺乏, 陈瑞等[12] 研究论述中也指明该研究 现状,对③的研究同样缺乏。气候气象变化对②、 ③的影响显著,其响应也更加敏感^[7],因而将②、③ 合称之为短历时冻融事件,区别①为长历时冻融事 件,并以短历时冻融事件为研究对象,通过评价的 视角和手段解析其特性。其中特性研究包括两方 面:研究冻融特性在时空分布中呈现的不同特征规 律;研究冻融特性在自身过程阶段(冻结和融化)中 呈现的不同特征规律。两方面在①的研究中较为 常见[13-14],对短历时冻融事件研究存在借鉴意义。

冻融事件可从发生的次数、时间、深度、广度、 温度和湿度等特性进行刻画。以往研究者们针对 当时的条件和不同的需求,采用了不同特性的指数 进行冻融事件评价,其中有:仅用历时(冻结持续天 数)[13-14] 进行评价: 仅用次数(冻融周期)[15-16] 进行评 价;分别用次数与温度(冻结温度)^[17-18]同时进行评 价;等等。然而以上指数多是反映单一的指数,温 度只反映冻融的热量变化情况,湿度只反映水分变 化情况,历时只体现推进顺畅程度,次数则忽略了 冻融本身是种变化过程的性质。仅使用单一指数 不能够全面衡量冻融,而分开逐一阐述又过于低效, 因此根据不同反映层面应采用不同指数进行评价, 而对同一反映层面(例如后文冻融强度层面)则可结 合多个单一指数探索构建出更全面高效的综合指 数进行评价。

构建综合指数的方法总体有3类:指标权重法、 多变量联合法、机器学习法。多变量联合法中的 Copula 函数在水文领域应用广泛,如:张迎等^[19]、李 军等^[20]应用 Copula 函数构建新型综合干旱指数对 干旱评估;陈子燊等^[21]应用 Copula 函数构建三变量 联合分布模型对洪水评估;等等。Copula 函数在处 理内部属性存在物理相关性的水文事件中显出良 好的适用性和不可替代的优越性[22]。冻融事件类似 于干旱、暴雨洪水事件,具有特性要素变量和分布 规律特征,同时冻融过程中的温度、湿度、历时之间 也存在物理联系,故采用 Copula 函数构造多维联合 分布产生综合指数评价冻融存在合理性和借鉴经验。

选取怒江源区中的季节冻土地区,依据野外原 型试验和实地考察事实,主要开展3方面的研究:(1) 提出短历时冻融事件的判别方法:(2)从短历时冻融 事件的5个特性层面形成评价内容,并分析其特征 规律;(3)针对强度层面,考虑冻结和冻融两个过程, 基于历时、温差、湿差3个单一指数分别构建综合 指数进行评价。

1 研究区概况

怒江源区那曲流域位于西藏北部那曲地区,地 理坐标为 30°54'~32°43'N, 91°12'~92°54'E, 流域 控制面积 16 967 km²,平均海拔在 4 500 m 以上。怒 江源区主要地貌类型包括高原丘陵、高原平原、高 原低山3种:主要土壤类型包括草毡土、草甸土、沼 泽土3种,其中草毡土分布最广,占总面积的75.29%; 主要冻土类型为多年冻土和季节冻土,面积分别约 $0.16 \, \mathrm{5 \ km^2} \, \mathrm{1.52 \ 5 \ km^2}$ 。怒江源区属于高原亚寒 带季风半湿润气候区,多年平均气温-0.6℃,极端 低温为-41.2 ℃,具有昼夜温差大、极端天气频发的 特点,源区多年平均降水量为477.8 mm,多年平均日 照时数基本维持在 2 723 h, 多年平均风速为 2.5 m/s^[23]。

2 材料与方法

2.1 定位监测与数据采集

海拔和植被是影响冻融事件的两个大尺度环境 因素^[7],依据两个影响因素的典型性,遴选怒江源区 香茂乡(91°40′54″E, 31°1′41″N)、那曲大桥(91°58′ 51"E, 31°25′13"N)、措玛乡)91°35′9"E, 32°16′48"N)、 小唐古拉(91°49′26″E, 32°33′16″N)4个区域布设监 测试验场。试验场均位于季节冻土区(试验场的位 置分布可见图 6; 气候变暖下, 小唐古拉地区多年冻 土与季节冻土并存^[23],本只针对其季节冻土)。试验 场的基本信息见表1,其中经纬度、海拔、坡度坡向 通过 RTK 系统测量, 坡度以 10 m水平距离间的海 拔落差计算。

Tab. 1 Basic information of the experimental field								
试验场	海拔/m	坡度	坡向	孔隙率/%	砂粒含量/%	总有机质含量/(g•kg ⁻¹)		
香茂乡	(4 693.4, 4 691.6)	10.20	朝西	40.34	58.77	64.18		
那曲大桥	(4 442.0, 4 442.2)	1.15	朝南	55.93	54.77	115.89		
措玛乡	(4 730.1, 4 732.0)	10.76	朝西	59.06	38.69	110.23		
小唐古拉	(5 013.7, 5 014.8)	6.28	朝南	42.86	72.26	35.05		

ま1
空险场其木信自

数据采集通过两种方式获取:一是以连续监测 的方式获取土壤温度和湿度数据。采用 EM50 的 5 个型号为 5TM 的传感器测量 5 cm 表层土壤的温、 湿度(液态体积含水率)。传感器连续监测时间为 2019年1月1日至2020年12月31日,采集步长 为1h,温度和湿度的分辨率在 0.1 ℃ 和 0.1%。传 感器在香茂乡、措玛乡、小唐古拉试验场埋设于山 坡坡中位置,在那曲大桥试验场埋设于坡底接近平 地的位置。二是以土样采集并检测的方式获取土 壤理化性质数据。在埋设传感器位置附近以环刀 三点法取样的方式采集 5 cm 表层土样, 取样时间 为2021年6月3日至8日。土样检测包含孔隙率、 机械组成、有机质含量3个指标。孔隙率依据土壤 密度-容重比值法测定执行,机械组成依据筛分法测 定执行, 土壤有机质由 Vario TOC 分析仪测定执行。 在检测数据结果中取3个十壤样品检测结果的均值. 见表1。

2.2 短历时冻融事件判别及遴选

表层土壤具有孕育短历时冻融事件频发的优良 环境,对气候气象变化的响应更为灵敏^[7],故仅判别 并遴选出 5 cm 表层土壤中发生的短历时冻融事件 作为研究对象。

根据土壤温、湿度曲线变化特征判别短历时 冻融事件。当一段温湿度曲线特征满足以下两点 设定时视为一次短历时冻融事件并遴选出,见图1。 规定发生一次短历时冻融事件必须包含冻结和融 化两个过程且顺序为先冻后融。冻结过程设定在 土壤温度降至0℃的时刻起始⁶⁶,在温、湿度达到 最低的时刻结束(若温、湿度的最低值不在同一 时刻出现,存在一定时间滞后,为全面考虑水热两 方面的最低值影响,则设定结束时间为后出现的 最低值,见图1中A、B段),并且冻结过程中必须 同时存在0℃到负温、高湿到低湿的转变;融化 过程在冻结过程的结束时刻开始,在土壤温湿度 达到最高的时刻结束(同理,存在滞后则结束在后 出现的最高值,见图1中A、C段),并且融化过程 中必须同时存在负温返回到正温、低湿返回到高 湿的转变。若只有温度转变但湿度维持不变时(见 图 1 中 E 段),或只有湿度转变但温度维持不变时 (见图1中F段)均不判定为短历时冻融事件。设 定一次短历时冻融事件的自身历时不超过120h (即5d)^[24]。当冻结或融化过程耗时漫长造成整 个过程历时大于120h时(见图1中D段)不判定 为短历时冻融事件。

图 1 短历时冻融事件判别及遴选 Fig. 1 Discrimination and selection of short-duration freeze-thaw events

2.3 短历时冻融事件评价内容

短历时冻融事件的评价内容包括事件发生的起 止时间、总历时、总次数、循环频率^[7]、强度,其内涵 解释如下:

起止时间:指首场事件的开始日期和末场事件 的结束日期。

总历时 D: 指所有事件发生后经历过的天数。 总次数 N: 指所有发生过的事件数量。

循环频率 f: 冻融循环是一段时间内连续不断发

生短历时冻融事件后形成的现象。循环频率是构成循环的事件次数(n_c)与循环自身历时(t_c)的比值, 计算公式即 f=n_c/t_c,反映短历时冻融事件在时间上 发生的密集程度。如对冻融循环现象的判别、n_c和 t_c作进一步解析,冻融循环须由 2 次及以上的短历 时冻融事件发生构成,当一次事件结束后 120 h(即 5 d)^[24]内无下一次事件的发生,则循环在该次事件 结束后中断结束,见图 2(a)。当选取研究的时间段 内存在多场循环时,该时间段的 f 计算中, n_c 为每场 循环的事件次数总和, t_c 为每场循环的历时总和, $f=n_{c}/t_{c}=8/(t_{1}+t_{3}+t_{5}), \ \mathbb{R} \otimes 2(a)_{\circ}$

强度 *I*: 强度反映短历时冻融事件自身发生时 的剧烈程度, 衡量事件发生带来的水、热、时变化。 过往强度评价基于两种形式: 单一指数法, 即仅在 时间 *t* 或温度 *T* 或湿度 θ 这 3 个层面中选取了其中 一种指数进行评价(如只采用温差)^[17-18], 缺乏 3 个 层面综合性的评价; 单一过程法, 即仅对冻融整个 过程^[3] 或中间过程^[6](冻结或融化)有单独的评价, 缺乏同时评价并对比。为更全面高效评价事件强 度, 分别选取以上 3 个层面中的单一指数进行综合 指数的构建, 且构建考虑到两种过程并对比。一是 仅以冻结单向过程 F 构建综合指数, 用于构建的单 一指数选取为冻结过程的历时 $t_{\rm F}$ 、温差即土壤温度 的变化量 $T_{\rm F}$ 、湿差即土壤液态含水量的变化量 $\theta_{\rm F}$ 。 计算公式分别为 $t_{\rm F}=t_{\rm MIN}-t_0$ 、 $T_{\rm F}=0-T_{\rm MIN}$ 、 $\theta_{\rm F}=\theta_0-\theta_{\rm MIN}$;二 是以冻融双向过程 FT构建综合指数,用于构建的 单一指数选取为冻融过程的历时 $t_{\rm FT}$ 、温差 $T_{\rm FT}$ 以及 湿差 $\theta_{\rm FT}$,计算公式分别为 $t_{\rm FT}=t_{\rm MAX}-t_0$ 、 $T_{\rm FT}=T_{\rm MAX}-T_{\rm MIN}$ 、 $\theta_{\rm FT}=\theta_{\rm MAX}-\theta_{\rm MIN}$,各单一指数值越大表示强度越大,见 图 2(b)。图 2中, $T_{\rm MIN}$ 、 $\theta_{\rm MIN}$ 分别为冻结过程中最低 的土壤温度、湿度; $T_{\rm MAX}$ 、 $\theta_{\rm MAX}$ 分别为融化过程中最 高的土壤温度、湿度; $t_{\rm MIN}$ 、 $t_{\rm MAX}$ 分别为冻结、融化过 程结束的时刻; t_0 为冻结过程开始的时刻; θ_0 为土壤 温度在 0 ℃ 时刻时的土壤湿度。

Fig. 2 Evaluation content of short-duration freeze-thaw events

评价选取 2019 年 9 月 1 日至 2020 年 8 月 31 日一年内,上述 4 个实验场中发生的所有短历时冻 融事件作为评价对象,并以上述评价内容进行 评价。

2.4 强度综合指数构建方法与步骤

Copula 函数构造多变量联合分布时不需单变 量服从同一分布,不受单变量服从何种分布限制^[22], 故本文采用 Copula 函数法构建强度综合指数,基本 步骤如下:

边缘分布拟合:选取水文中常见的 5 种分布对 强度单一指数进行拟合,分别为 Gamma(GAM)分 布、Gen. Extreme Value(GEV)分布、Lognormal(LOG) 分布、Log-Logistic(LOL)分布、Weibull(WBL)分布, 采用 Kolmogorov-Smirnov 检验法进行分布的拟合 优度检验,选取拟合最优的分布作为各单一指数的 边缘分布。

Copula 函数选择:选取 Archimedean Copula 函 数族中常用的 3 种 Copula 函数进行联合分布的构 建,分别为 Clayton、Frank 和 Gumbel Copula 函数, 该函数族参数结构简单,可以构造多种形式、适应 性强的多变量联合分布函数。采用极大似然法估 计 Copula 函数参数,适应于二维及以上维度的估计; 采用 AIC 信息准则、RMSE 对经验分布和理论分布 进行拟合优度评价,选取拟合最优的 Copula 函数用 于强度综合指数构建。

强度综合指数构建: 把 t、T、 θ 视为随机变量 X_1 、 X_2 、 X_3 , 边缘分布为 $F(x_1)$ 、 $F(x_2)$ 、 $F(x_3)$, 联合分布 P 用拟合最优的 Copula 函数进行连接后获得累积 联合概率 q, 公式为

$$P(x_1 < X_1, x_2 < X_2, x_3 < X_3) = C[F(x_1), F(x_2),$$

$$F(x_3)] = q$$
(1)

利用累积联合概率 q 获得 F 和 FT 两种构建过 程下的强度综合指数,公式为

$$R_{\rm F} = \varphi^{-1}(q_{\rm F}) \tag{2}$$

$$R_{\rm FT} = \varphi^{-1}(q_{\rm FT}) \tag{3}$$

式中: φ 为标准正态分布; $R_{\rm F}$ 、 $R_{\rm FT}$ 分别为 F、FT 构建 下的强度综合指数,指数值越大表示强度越大; $q_{\rm F}$ 和 $q_{\rm FT}$ 分别对应其累积联合概率。

强度综合指数归一化处理:对构建的强度综合 指数进行正向指标的归一化处理,公式为

$$I_{\rm RF} = \frac{R_{\rm F} - R_{\rm F,MIN}}{R_{\rm F,MAX} - R_{\rm F,MIN}} \tag{4}$$

$$I_{\rm RFT} = \frac{R_{\rm FT} - R_{\rm FT,MIN}}{R_{\rm FT,MAX} - R_{\rm FT,MIN}}$$
(5)

式中:*I*_{F,MIN}、*I*_{FT,MIN}分别为F、FT构建下所有事件 中强度综合指数的最小值;*I*_{F,MAX}、*I*_{FT,MAX}为F、FT构 建F所有事件中强度结合指数的大值。最终将归 一化后的指数作为强度评价的指标。

Tab

3 结果与分析

3.1 时间、次数、频率评价结果

怒江源区表土短历时冻融事件主要集中在 10—12月和3—5月发生,总体从秋季气候变冷开 始逐渐频繁发生,深冬来临前又逐渐停止,来年春 季气候变暖继续逐渐频繁发生,进入初夏之前完全 结束。各实验场中事件发生的起止日期、总历时、 总次数及循环频率见表2。

	表 2	各试验场内事件时间、次数和循环频率	
. 2	Time, nun	ber and cycle frequency of events in each experimental field	

					-	
试验场	首场事件发生时间	末场事件发生时间	总历时/d	总次数	循环历时	循环频率/(次•d ⁻¹)
					2019-11-10-2019-12-02	
香茂乡	2019-11-02	2020-04-20	98	64	2020-02-12-2020-02-21	0.865
					2020-03-01-2020-04-13	
那曲十妖	2010 11 20	2020-03-25	28	24	2019-11-30-2019-12-02	0.957
那曲人你	2019-11-30		28		2020.02.28-2020.03.25	0.857
		2020-04-27	140	103	2019-10-22-2019-12-10	
措玛乡	2010 10 17				2020-02-01-2020-02-26	0.004
	2019-10-17				2020-03-12-2020-04-18	0.904
					2020-04-24-2020-04-27	
					2019-10-15-2019-11-03	
小唐古拉	2019-10-15	2020-05-28	61	33	2020-04-16-2020-04-21	0.846
					2020-04-28-2020-05-13	

短历时冻融事件在各试验场中以小唐古拉、措 玛乡、香茂乡、那曲大桥的顺序依次开始发生,来年 以完全相反的顺序依次结束,总体源区北部比南部 出现的早,结束的晚。2019—2020年,最高海拔位 置的小唐古拉比最低海拔位置的那曲大桥出现首 场事件早45d左右,结束末场事件晚64d左右,两 地在起止时间上差距最大。同时,小唐古拉比香茂 乡早18d、晚37d左右,比措玛乡早2d、晚31d左 右。各地之间结束末场事件的时间差距比开始首 场事件的时间差距更大一些。所有事件在总时间 跨度上,措玛乡历经时间最长为140d,其次为香茂 乡98d、小唐古拉61d,那曲大桥最短仅历经28d。 处于中海拔位置区的措玛乡和香茂乡总历时明显 更长。综上,源区内的短历时冻融事件在起止时间、 总历时上空间差异明显。

短历时冻融事件在4个试验场中共发生224次, 各地总次数由多到少依次为措玛乡(103次)、香茂 乡(64次)、小唐古拉山(33次)、那曲大桥(24次)。 与总历时规律相同,中海拔位置区域的两试验场总 次数较多。其中次数最多的措玛乡大约是香茂乡、 小唐古拉、那曲大桥的 1.5 倍、3 倍、4 倍。综上,总 次数的空间差异同样明显。

首场事件发生后不一定随即产生冻融循环现象, 如中海拔位置的香茂乡、措玛乡大约在首场事件 7~10 d 后才能形成稳定且循环往复的冻融。各地从 入秋至12月中旬前循环都将陆续中断,历经冬季 在2月初以后循环又陆续开始;其间由于环境气温 会存在阶段性偏高或偏低的波动,循环也会在该阶 段被短暂中段后又继续开始,如香茂乡、措玛乡和 小唐古拉。在循环频率上, 措玛乡最高(0.904 次/d), 反映出该地短历时冻融在时间上更密集频繁,表土 响应气温变化也更灵敏,易受冻融影响;香茂乡 (0.865次/d)、那曲大桥(0.857次/d)、小唐古拉 (0.846 次/d)依次降低。循环频率与总次数顺序规 律稍有不同,区域发生事件次数多不一定能更紧密 接连地发生,如那曲大桥与小唐古拉。但总体上, 中海拔位置区域的两试验场循环频率更大。综上, 循环频率的空间差异同样明显。

3.2 强度综合指数构建

强度单一指数边缘分布:各强度单一指数最优 边缘分布的选择见表 3,冻结温差为 LOG、冻结湿 差为 LOG、冻结历时为 GEV、冻融温差为 GEV、冻 融湿差为 GEV、冻融历时为 GAM, 最优拟合的边缘 分布均能通过 95% 显著性检验。将强度单一指数 的最优边缘分布函数作为理论分布函数, 其与经 验分布函数的展示见图 3, 两者的拟合程度是优良的。

此行立旦	计内八十	今 来	K-S检验结果		
行低受重	边琢分巾	参奴	D_n	P值	
	GEV	<i>k</i> =0.299 71 <i>σ</i> =1.692 5 μ=1.693 5	0.071 8	0.189 5	
冻结温差	LOG	σ=1.014 5 μ=0.741 9	0.043 6	0.770 9	
	LOL	<i>α</i> =1.707 7 <i>β</i> =2.082	0.051 9	0.564 8	
	GEV	<i>k</i> =0.266 16 <i>σ</i> =1.291 1 <i>μ</i> =1.831 4	0.046 7	0.694 3	
冻结湿差	LOG	σ=0.753 11 μ=0.831 46	0.044 9	0.739 3	
	LOL	<i>α</i> =2.329 7 <i>β</i> =2.279 7	0.045 2	0.733 0	
冻结历时	GAM	<i>α</i> =3.772 7 <i>β</i> =2.232 6	0.044 4	0.753 1	
	GEV	k =-0.045 88 σ =3.566 1 μ =6.519 7	0.042 5	0.796 9	
	WBL	<i>α</i> =2.228 9 <i>β</i> =9.386 6	0.052 5	0.550 9	
	GAM	α=3.463 4 β=2.116 1	0.043 7	0.769 0	
冻融温差	GEV	<i>k</i> =0.004 64 σ=3.134 μ=5.505 6	0.043 5	0.772 5	
	WBL	<i>α</i> =2.059 3 <i>β</i> =8.193 6	0.057 7	0.429 3	
	GAM	<i>α</i> =7.973 2 <i>β</i> =0.834 99	0.045 2	0.732 6	
冻融湿差	GEV	k =-0.122 93 σ =2.108 μ =5.671 6	0.043 5	0.773 0	
	LOL	<i>α</i> =4.572 9 <i>β</i> =6.200 5	0.064 5	0.295 7	
	GAM	<i>α</i> =3.713 2 <i>β</i> =3.149 7	0.052 1	0.558 3	
冻融历时	GEV	<i>k</i> =-0.007 95 <i>σ</i> =4.768 0 <i>μ</i> =8.961 6	0.057 7	0.429 0	
	WBL	<i>α</i> =2.079 4 <i>β</i> =13.241 2	0.057 8	0.427 5	

Tab. 3 Marginal distribution function parameters estimation and goodness of fit test

注: 仅展示检验结果前3优的分布。

图 3 单一指数经验与理论分布函数

Fig. 3 Empirical and theoretical distribution functions of single index

Copula 函数及联合分布:基于最优边缘分布, 引入 Copula 函数分别建立 F 和 FT 两种过程下的二 维和三维联合分布。构建前对强度单一指数之间 进行相关性分析,其中温差-历时的相关性较强, Spearman 相关系数达 0.8 以上,湿差-历时、温差-湿 差的相关性较弱, Spearman 相关系数在 0.5、0.3 以 上。Copula 函数的参数估计及拟合优度评价结果 见表 4。根据均方根误差(RMSE)和赤池信息量 (AIC)评判准则, Clayton Copula函数对冻结温差-湿 差、冻结湿差-历时、冻融温差-湿差、冻融湿差-历 时、冻结温差-湿差-历时的拟合效果最优, Frank Copula 函数对冻结温差-历时、冻融温差-湿差-历时 的拟合效果最优, Gumbel Copula 函数对冻融温差-历时的拟合效果最优。选择对应最优 Copula 函数 构建联合分布和强度综合指数。图 4 为最优 Copula 函数下的理论与经验频率值拟合效果图, 散点值均 匀分布在 45°对角线附近, 且经验与理论频率两者 *R*² 均在 0.95 以上, 更直观反映所选最优 Copula 函 数对联合分布的拟合效果是优良的。

表 4 Copula 函数参数估计及拟合优度评价 Tab. 4 Copula function parameters estimation and goodness of fit test

表征指数	Copula函数	函数参数	AIC	RMSE	表征指数	Copula函数	函数参数	AIC	RMSE
冻结温差-湿差	Frank	1.797	-766.837	0.032	冻融温差-历时	Frank	3.570	-925.718	0.016
	Clayton	0.697 5	-832.976	0.024		Clayton	0.552 3	-772.043	0.032
	Gumbel	1.102	-720.288	0.040		Gumbel	1.531	-939.043	0.015
	Frank	10.660	-846.898	0.023	冻融湿差-历时	Frank	0.715 9	-850.787	0.022
冻结温差-历时	Clayton	2.589	-777.683	0.031		Clayton	0.186 4	-861.955	0.021
	Gumbel	2.717	-768.085	0.032		Gumbel	1.042	-824.337	0.025
	Frank	3.411	-799.969	0.028	冻结温差-湿差-历时	Frank	3.758	-686.524	0.046
冻结湿差-历时	Clayton	1.268	-884.947	0.019		Clayton	1.203	-734.400	0.037
	Gumbel	1.386	-742.0361	0.036		Gumbel	1.457	-623.698	0.061
冻融温差-湿差	Frank	1.452	-825.850	0.025	冻融温差-湿差-历时	Frank	1.211	-689.677	0.046
	Clayton	0.433 1	-840.223	0.023		Clayton	0.294 2	-685.049	0.047
	Gumbel	1.093	-815.969	0.026		Gumbel	1.124	-661.015	0.052

绘制 F 和 FT 两种过程下各强度单一指数的二 维联合分布函数等值线图,见图 5。图 5 中所有联 合分布的概率等值线变化趋势是相同的,随着一个 值的增大另一个值减少。F 的二维联合概率等值线 由小到大变化时始终明显呈现出间距从紧密到宽 松的特点,概率等值线 0.1 与 0.3 之间最紧密;而 FT 的等概率值间距则是从宽松到紧密再宽松,概率 等值线 0.3 与 0.5 之间最紧密。对于 F,在温差 0~ 5℃、湿差 0~5%、历时 0~10 h 是联合概率等值线明 显紧密的范围,概率的变化率大;对应 FT,在温差 5~10℃、湿差 5%~10%、历时 5~15 h 的范围联合概 率等值线明显紧密,概率的变化率大。

3.3 强度评价结果

构建联合分布后,计算各试验场中所有短历 时冻融事件的强度综合指数值,并从小到大排列编 号为 1~224,在最大与最小强度值 1~0 均匀划分 为 3 档,对强度值在 1~<0.666、>0.666~<0.333、 >0.333~0的事件分别定义为强、中、弱事件,并统计 各地发生 3 种事件的次数,绘制成百分比图(图 6)。 同时统计所有事件强度的累加值、平均值、最大和 最小值,结果见表5。

从3种事件组成分析,弱等事件发生最少,F和 FT构建下各试验场中占比均不超过15%,表明以随 机天气驱动的冻融事件总体发生少,短历时冻融事 件中以昼夜转换驱动的事件占主体。香茂乡中以 发生中等事件居多;那曲大桥中F构建下以强等居 多,FT构建下转变以中等居多;其余两地均以强等 居多。措玛乡中3种事件占比最趋于均衡;而小唐 古拉中的强等事件偏多、占比大,F和FT构建下分 别达58%、50%,该地受冻融影响更严重。

累加强度反映年内所有事件整体在水、热、时 上的影响(对应表 5 中的综合指数累加值)。F 和 FT 构建下均表明措玛乡中影响最大,依次以香茂乡、 小唐古拉、那曲大桥递减。两种过程下受影响最强 的试验场约为最弱的 3.67 倍和 4.86 倍,与事件发生 的总次数差异明显有关;平均强度反映年内发生单 次事件在水、热、时影响上的集中趋势(对应表 5 中 的综合指数平均值)。

第20卷第5期 南水北调与水利科技(中英文) 2022年10月

Fig. 5 Two-dimensional joint distribution contours

F构建下平均强度以那曲大桥、小唐古拉、措 玛乡、香茂乡递减。那曲大桥及小唐古拉的单次事 件集中趋势在强等事件的范围,其余两地在中等事件范围。那曲大桥地理位置靠近河流,土壤天然含

图 6 各试验场 3 种强度事件数量百分比

Fig. 6 Percentage of the number of three intensity events in each experimental field

表 5 各试验场强度综合指数

Tab. 5 Intensity composite index in each experimental field

物建计理	强度统计值 -		试验场					
构建过性			香茂乡	那曲大桥	措玛乡	小唐古拉		
	累加值	综合指数	35.044	16.649	61.028	22.559		
	平均值	综合指数	0.548	0.694	0.593	0.684		
		综合指数	0.915	0.960	0.993	1.000		
F	最大值	发生日期	2020-02-18	2020-02-28	2019-12-01	2019-10-26		
F		对 <u>应</u> $T_{ m F}$, $ heta_{ m F}$, $t_{ m F}$	5.5, 3.6, 16.9	5.2, 6.6, 12.7	8.8, 4.4, 15.4	4.3, 7.8, 20		
		综合指数	0.151	0.277	0	0.250		
	最小值	发生日期	2019-11-12	2020-03-24	2019-11-05	2020-05-10		
		对应 $T_{\rm F}$, $ heta_{ m F}$, $t_{ m F}$	0.2, 1.2, 2.0	0.3, 2.4, 5.0	0.3, 0.3, 1.5	0.3, 1.0, 3.0		
	累加值	综合指数	34.296	13.201	64.192	17.912		
	平均值	综合指数	0.536	0.550	0.623	0.543		
		综合指数	0.970	0.966	0.978	1.000		
FT	最大值	发生日期	2020-03-08	2019-11-30	2019-12-01	2020-04-28		
		对应 $T_{ m FT}$, $ heta_{ m FT}$, $t_{ m FT}$	10.8, 9.2, 25.6	10.1, 12.9, 18.7	12.7, 8.9, 22.0	10.6, 14.6, 22.2		
		综合指数	0.190	0.196	0	0.052		
	最小值	发生日期	2019-11-30	2020-03-20	2019-11-05	2019-10-16		
		对应 $T_{ m FT}$, $ heta_{ m FT}$, $t_{ m FT}$	1.8, 2.4, 8.9	1.7, 3.0, 6.1	2.1, 2.0, 2.3	0.6, 2.0, 7.0		

水量高,冻结中湿度减少量多而致强度大,而小唐 古拉海拔高则更易冻结时日长而致强度大;FT 构建 下变为措玛乡的平均强度最强,其余 3 地递减顺序 不变,各地单次事件的集中趋势都在中等事件范围。

最大、最小强度是对极端事件在水、热、时影响上的衡量与把控。4个试验场相比,F和FT构建下小唐古拉的最大强度都更大,但对应两次不同的事件产生,发生日期分别在2019年10月26日和2020年4月28日,其中,冻结湿差可达7.8%,冻融湿差可达14.6%,见表5;同理F和FT构建下措玛乡的最小强度都更小,由同一次事件产生,发生日期在2019年11月5日,其中冻结历时仅1.5h,冻融历时仅2.3h。由最大强度反映出小唐古拉该地更易受到高强度甚至极端强度的冻融影响,而由最小强度则反映出措玛乡该地更易受随机天气的驱动下发生冻融。

综上还表明:怒江源区短历时冻融事件在强度 特性上同样空间差异明显;对比两种构建过程,强 度结果没有大体趋势上的相反、数值偏差不大 (表5),但仍有所差别:一是F与FT下的最大(最小) 强度事件发生日期不一定相同;二是香茂乡、那曲 大桥、小唐古拉中,F比FT的累加及平均强度综合 指数值都更大一些,强等事件占比也更大。

3.4 评价结果讨论

冻融特性及其特征规律是多影响因素综合作用 的结果。海拔对土壤冻融的影响较大[25-27],总体决 定了短历时冻融事件在区域间的出现时间顺序、总 历时、总次数。海拔5000m以上区域(小唐古拉) 总体气温更寒冷、4 500 m 以下区域(那曲大桥)总 体气温更暖和,在年内分别具有较长的完全冻结期、 完全融化期,因而短历时冻融事件集中发生的冻结 过及融化过程期相对较短,使得冻融在历时、次数 上明显减弱。坡度坡向对土壤接受太阳辐射总量 和强度有影响,使得土壤获取热量不同而改变冻融 发生特性。有研究^[28]表明冻融影响在 0~3°的坡不 敏感,3°~8°的坡轻度敏感,8°~15°的坡中度敏感, 15°~90°的坡重度敏感,印证研究结果,坡度较高区 域(措玛乡、香茂乡)发生事件次数更多,当坡度逐 渐减缓时次数也逐渐变少(小唐古拉、那曲大桥)。 坡向朝南与朝北对冻融特性也具有影响^[29], 但还需进一步增设实验完善研究。土壤物理性质 与冻融特性(强度)有着直接影响,研究[30] 表明土壤 砂粒含量增多,减少了孔隙率,与本文检测结果一

致。当土壤孔隙率减少,空气越少,土壤导热率越 大^[31],因而热量易传递不易储存,使得5cm土层温 度变化缓和导致平均强度小。同时,砂粒含量多, 土壤蓄、持水能力低^[32]也使得湿度变化缓和导致平 均强度小(香茂乡)。5cm以下土壤层的性质、积雪 及植被覆盖、人类活动等对表层土壤冻融特性的呈 现也具有一定影响,但仍需进一步调查与增设对照 实验,细化和完善研究结果。

结果显示 F 比 FT 构建下的强度综合指数有所 增大,表明在冻结过程的基础上加入融化过程后强 度反被削弱,故而体现冻结和融化过程并不是完全 等效应的,融化过程产生的强度效应不及冻结过程 产生的强度效应。讨论产生这种现象的几点可能 原因:冻结是一个较慢的过程^[33],青藏高原土壤冻融 存在常见的冻结历时长于融化历时的现象^[34];短历 时冻融事件频发的月份整体气温偏低,一日之中土 温小于 0 ℃ 的时间较长,土壤微弱增温融化后又快 速大幅降温被冻结;频繁反复的冻融使得水分迁 移^[35],观测到土壤减湿多于增湿。

由于定义土壤冻结和融化的状态存在许多不同 的见解^[36],同时青藏高原环境恶劣导致仪器易发生 故障、开展实验困难,使评价结果不可避免存在一 定的误差和特殊性,还需进一步优化方法、增多实 验点和实验频次来证明和提高评价结果的准确性 和普遍性。

4 结论

以怒江源区表土频发的短历时冻融事件为研究 对象,从事件5个特性层面形成评价内容,阐明事件 特性在源区的特征规律。基于评价结果及讨论提 炼以下结论:

怒江源区季节冻土中,短历时冻融事件特性在 不同空间位置上具有差异,表现在起止时间、历时、 次数、频率、强度上均有很大不同,且差异性由多因 素共同影响下形成。总体特性随海拔位置呈现出 如下的特征规律:在入冬前事件以高海拔区向低海 拔区依次开始发生,来年入夏前以低海拔区向高海 拔区依次结束;4500~5000m中海拔区的事件比 4500m以下低海拔区和5000m以上高海拔区的 事件总历时更长、总次数更多、循环频率更高、累 加强度更大。

高频的短历时冻融事件发生,能够不断聚集冻 融过程中产生的水热影响,极大促进土壤结构等性 质的改变;而高强甚至极端强度的短历时冻融事件 发生,则直接放大了这种水热影响,产生骤变土壤 性质、灭绝生物活性的危害。怒江源区措玛乡、小 唐古拉等北部区域土壤分别受冻融频率、最大强度 的影响更严重,应更注重土壤冻融的监测和防治。

冻结过程 F 和冻融过程 FT 是两种强度效应不同的过程,分别构建后的强度综合指数呈现一定差异。冻结强度整体高于冻融强度,融化过程在水、热、时的变化程度上不及冻结过程,强度有所削弱。

参考文献(References):

- [1] MIURA M, HILL P W, JONES D L. Impact of a single freeze-thaw and dry-wet event on soil solutes and microbial metabolites [J]. Applied Soil Ecology, 2020, 153: 1-4. DOI: 10.1016/j.apsoil.2020.103636.
- [2] MONSON L. Plant-microbe competition for soil amino acids in the alpine tundra: Effects of freeze-thaw and dry-rewet events[J]. Oecologia, 1998, 113(3): 406-414. DOI: 10.1007/s004420050393.
- [3] 梁川, 赵莉花, 张博雄. 长江江源高寒地区气候变化 对水文环境影响研究综述[J]. 南水北调与水利科 技, 2013, 11(1): 81-86. (LIANG C, ZHAO L H, ZHANG B X. Effects of climate change on hydrological environment in the extremely frigid zone of the source region of Yangtze River[J]. South-to-North Water Transfers and Water Science & Technology, 2013, 11(1): 81-86. (in Chinese)) DOI: 10.3724/SP.J. 1201.2013.01081.
- [4] 姚檀栋,陈发虎,崔鹏,等. 从青藏高原到第三极和泛 第三极[J]. 中国科学院院刊, 2017, 32(9): 924-931. (YAO T D, CHEN F H, CUI P, et al. From Tibetan Plateau to third pole and pan-third pole[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(9): 924-931. (in Chinese)) DOI: 10.16418/j.issn.1000-3045.2017. 09.001.
- [5] ZOU D, LIN Z, YU S, et al. A new map of permafrost distribution on the Tibetan Plateau[J]. The Cryosphere, 2017, 11(6): 2527-2542. DOI: 10.5194/ tc-11-2527-2017.
- [6] 满子豪,翁白莎,杨裕恒,等. 青藏高原冻融过程期划 分及发展趋势研究[J]. 水电能源科学, 2020, 38(7): 16-19. (MAN Z H, WENG B S, YANG Y H, et al. Study on division and development trend of freezingthawing process period in the Qinghai-Tibet Plateau[J]. Water Resources and Power, 2020, 38(7): 16-19. (in Chinese))
- [7] 满子豪.那曲流域高寒草甸应对冻融事件的监测研 究[D]. 邯郸: 河北工程大学, 2020. (MAN Z H.Mon-

itoring study on alpine meadow response to freezingthawing events in the Nagqu River basin[D]. Handan: Hebei University of Engineering, 2020.(in Chinese))

- [8] GUO D, WANG H. Simulated change in the near-surface soil freeze/thaw cycle on the Tibetan Plateau from 1981 to 2010[J]. Chinese Science Bulletin, 2014, 59(20):2439-2448. DOI: 10.1007/s11434-014-0347-x.
- [9] WANG G, HU H, LI T. The influence of freeze-thaw cycles of active soil layer on surface runoff in a permafrost watershed[J]. Journal of Hydrology, 2009, 375(3-4): 438-449. DOI: 10.1016/j.jhydrol.2009.06. 046.
- [10] XIE S B, QU J J, LAI Y M, et al. Effects of freezethaw cycles on soil mechanical and physical properties in the Qinghai-Tibet Plateau[J]. Journal of Mountain Science, 2015, 12(4): 999-1009. DOI: 10. 1007/s11629-014-3384-7.
- [11] 杨梅学,姚檀栋, HIROSE N, et al. 青藏高原表层土 壤的日冻融循环[J]. 科学通报, 2006(16): 1974-1976. (YANG M X, YAO T D, HIROSE N, et al. The daily freeze-thaw cycle of the surface soil on the Qinghai-TibetPlateau[J].ChineseScienceBulletin,2006 (16): 1974-1976. (in Chinese)) DOI: 10.3321/j.issn: 0023-074X.2006.16.020.
- [12] 陈瑞,杨梅学,万国宁,等.基于水热变化的青藏高 原土壤冻融过程研究进展[J]. 地理科学进展,2020, 39(11): 1944-1958. (CHEN R, YANG M X, WAN G N, et al. Soil freezing-thawing processes on the Tibetan Plateau: A review based on hydrothermal dynamics[J]. Progress in Geography, 2020, 39(11): 1944-1958. (in Chinese)) DOI: 10.18306/dlkxjz. 2020.11.014.
- [13] 蔡林彤,方雪薇,吕世华,等.青藏高原中部冻融强度变化及其与气温的关系[J].高原气象,2021,40(2):244-256.(CAILT,FANGXW,LYUSH,et al. Analysis on the changes of soil freezing and thawing process and its relationship with air temperature in the central Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2021, 40(2): 244-256. (in Chinese)) DOI: 10.7522/j.issn.1000-0534.2020.00073.
- [14] 盛乃宁, 鞠琴, 顿珠加措, 等. 黄河源区冻土变化特 征及其与温度的关系[J]. 南水北调与水利科技(中 英文), 2021, 19(5): 843-852. (SHENG N N, JU Q, Dunzhujiacuo, et al. Permafrost variation characteristics and its relationship with temperature in Yellow River[J]. South-to-North Water Transfers and Water Science & Technology, 2021, 19(5): 843-852. (in Chinese)) DOI: 10.13476/j.cnki.nsbdqk.2021.0088.
- [15] 魏霞,李勋贵, HUANG C H. 交替冻融对坡面产流产 沙的影响[J]. 农业工程学报, 2015, 31(13): 157-

163. (WEI X, LI X G, HUANG C H. Impacts of freeze-thaw cycles on runoff and sediment yield of slope land[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(13): 157-163. (in Chinese)) DOI: 10.11975/j.issn.1002-6819.2015. 13.022.

- [16] 肖东辉, 冯文杰, 张泽, 等. 冻融循环对兰州黄土渗透性变化的影响[J]. 冰川冻土, 2014, 36(5): 1192-1198. (XIAO D H, FENG W J, ZHANG Z, et al. Research on the Lanzhou loess's permeabilities changing with freezing-thawing cycles[J]. Journal of Glaciology and Geocryology, 2014, 36(5): 1192-1198. (in Chinese)) DOI: 10.7522/j.issn.1000-0240. 2014.0142.
- [17] 姚甜甜, 聂晓刚, 张鹏, 等. 冻融作用对藏东南高寒区土壤容重、孔隙度的影响[J]. 高原农业, 2020, 4
 (4): 386-391. (YAO T T, NIE X G, ZHANG P, et al. Effects of freeze-thaw on soil bulk density and porosity in alpine region of southeastern Tibet[J]. Journal of Plateau Agriculture, 2020, 4(4): 386-391. (in Chinese)) DOI: 10.19707/j.cnki.jpa.2020.04.010.
- [18] 常丹,刘建坤,李旭,等.冻融循环对青藏粉砂土力 学性质影响的试验研究[J]. 岩石力学与工程学报, 2014, 33(7): 1496-1502. (CHANG D, LIU J K, LI X, et al. Experiment study of effects of freezingthawing cycles on mechanical properties of Qinghai-Tibet silty sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(7): 1496-1502. (in Chinese)) DOI: 10.3969/j.issn.1000-6915.2014. 07.023.
- [19] 张迎,黄生志,黄强,等. 基于Copula函数的新型综合 干旱指数构建与应用[J]. 水利学报, 2018, 49(6): 703-714. (ZHANG Y, HUANG S Z, HUANG Q, et al. Construction and application of a new comprehensive drought index based on Copula function[J]. Journal of Hydraulic Engineering, 2018, 49(6): 703-714. (in Chinese)) DOI: 10.13243/j.cnki.slxb. 20171207.
- [20] 李军, 吴旭树, 王兆礼, 等. 基于新型综合干旱指数的珠江流域未来干旱变化特征研究[J]. 水利学报, 2021, 52(4): 486-497. (LI J, WU X S, WANG Z L, et al. Changes of drought characteristics in future in Pearl River basin describing by a new comprehensive standardized drought index[J]. Journal of Hydraulic Engineering, 2021, 52(4): 486-497. (in Chinese)) DOI: 10.13243/j.cnki.slxb.20200320.
- [21] 陈子燊,黄强,刘曾美.基于非对称Archimedean Copula的三变量洪水风险评估[J].水科学进展, 2016,27(5):763-771.(CHEN Z S, HUANG Q, LIU Z M. Risk assessment of trivariate flood based on

asymmetric Archimedean Copulas[J]. Advances in Water Science, 2016, 27(5): 763-771. (in Chinese)) DOI: 10.14042/j.cnki.32.1309.2016.05.014.

- [22] 刘章君, 郭生练, 许新发, 等. Copula函数在水文水资源中的研究进展与述评[J]. 水科学进展, 2021, 32(1): 148-159. (LIU Z J, GUO S L, XU X F, et al. Application of Copula functions in hydrology and water resources:a state-of-the-art review[J]. Advances in Water Science, 2021, 32(1): 148-159. (in Chinese)) DOI:10.14042/j.cnki.32.1309.2021.01.015.
- [23] 宫博亚.基于自然地理特征的那曲流域水源解析[D].北京:中国水利水电科学研究院, 2019.
 (GONG B Y. Geomorphic-centered analysis of water source in Naqu River basin, Qinghai-Tibetan Plateau, China[D] Beijing, ChinaInstituteofWaterResources and Hydropower Research, 2019.(in Chinese))
- [24] 林笠, 王其兵, 张振华, 等. 温暖化加剧青藏高原高 寒草甸土非生长季冻融循环[J]. 北京大学学报 (自 然科学版), 2017, 53(1): 171-178. (LIN L, WANG Q B, ZHANG Z H, et al. Warming enhances soil freezing and thawing circles in the non-growing season in a Tibetan alpine grassland[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53 (1): 171-178. (in Chinese)) DOI: 10.13209/j.0479-8023.2016.121.
- [25] LI X, JIN R, PAN X, et al. Changes in the near-surface soil freeze-thaw cycle on the Qinghai-Tibetan Plateau[J]. International Journal of Applied Earth Observation and Geoinformation, 2012, 17(1): 33-42. DOI: 10.1016/j.jag.2011.12.002.
- [26] WANG K, ZHANG T, ZHONG X H, et al. Changes in the timing and duration of the near-surface soil freeze/thaw status from 1956 to 2006 across China[J]. The Cryosphere, 2015, 9(3): 1321-1331.
 DOI: 10.5194/tc-9-1321-2015.
- [27] PENG X Q, FRAUENFELD O W, CAO B, et al. Response of changes in seasonal soil freeze/thaw state to climate change from 1950 to 2010 across China[J]. Journal of Geophysical Research Earth Surface, 2016, 121: 1984-2000. DOI: 10.1002/ 2016jf003876.
- [28] 王莉雁,肖燚,江凌,等. 青藏高原冻融侵蚀敏感性 评价与分析[J]. 冰川冻土, 2017, 39(1): 61-69.
 (WANG L Y, XIAO Y, JIANG L, et al. Assessment and analysis of the freeze-thaw erosion sensitivity on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2017, 39(1): 61-69. (in Chinese))
- [29] 兰爱玉,林战举,范星文,等.青藏高原北麓河多年 冻土区阴阳坡地表能量和浅层土壤温湿度差异研 究[J].地球科学进展,2021,36(9):962-979.(LAN

•1038• 研究与探讨

A Y, LIN Z J, FAN X W, et al. Differences of surface energy and shallow soil temperature and humidity at sunny and shady slopes in permafrost region, Beiluhe basin, Qinghai-Tibet Plateau [J]. Advances in Earth Science, 2021, 36(9): 962-979. (in Chinese)) DOI: 10.11867/j.issn.1001-8166.2021.081.

- [30] 潘永洁, 吕世华, 高艳红, 等. 砾石对青藏高原土壤 水热特性影响的数值模拟[J]. 高原气象, 2015, 34(5): 1224-1236. (PAN Y J, LYU S H, GAO Y H, et al. Simulation of influence of gravel on soil thermal and hydraulic properties on Qinghai-Xizang Plateau [J]. Plateau Meteorology, 2015, 34(5): 1224-1236. (in Chinese)) DOI: CNKI:SUN:GYQX.0. 2015-05-004.
- [31] 何玉洁, 宜树华, 郭新磊. 青藏高原含砂砾石土壤导 热率实验研究[J]. 冰川冻土, 2017, 39(2): 343-350. (HE Y J, YI S H, GUO X L. Experimental study on thermal conductivity of soil with gravel on the Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2017, 39(2): 343-350. (in Chinese)) DOI: 10.7522/j.issn.1000-0240.2017.0039.
- [32] 李卓, 冯浩, 吴普特, 等. 砂粒含量对土壤水分蓄持 能力影响模拟试验研究[J].水土保持学报,2009, 23(3): 204-208. (LI Z, FENG H, WU P T, et al. Simulated experiment on effects of soil clay particle content on soil water holding capacity[J]. Journal of Soil and Water Conservation, 2009, 23(3): 204-208. (in Chinese)) DOI: 10.3321/j.issn:1009-2242.2009. 03.044.
- [33] 王澄海,师锐,左洪超.青藏高原西部冻融期陆面过

程的模拟分析[J]. 高原气象, 2008(2): 239-248. (WANG C H, SHI R, ZUO H C. Analysis on simulation of characteristic of land surface in western Qinghai-Xizang Plateau during frozen and thawing[J]. Plateau Meteorology, 2008(2): 239-248. (in Chinese)) DOI: 10.3969/j.issn.1000-0240.2007.01.012.

- [34] 张海宏,肖宏斌,祁栋林,等.青藏高原湿地土壤冻 结、融化期间的陆面过程特征[J]. 气象学报, 2017, 75(3): 481-491. (ZHANG H H, XIAO H B, QI D L, et al. Features of land surface process over wetland at Tibetan Plateau during soil freezing and thawing periods[J]. Acta Meteorologica Sinica, 2017, 75(3): 481-491. (in Chinese)) DOI: 10.11676/gxxb2017. 034.
- [35] 焦永亮, 李韧, 赵林, 等. 多年冻土区活动层冻融状 况及土壤水分运移特征[J].冰川冻土, 2014, 36(2): 237-247. (JIAO Y L, LI R, ZHAO L, et al. Processes of soil thawing-freezing and features of soil moisture migration in the permafrost active layer[J]. Journal of Glaciology and Geocryology, 2014, 36(2): 237-247. (in Chinese)) DOI: 10.7522/j.issn.1000-0240.2014.0030.
- [36] 杜军,周刊社,次旺顿珠.羌塘国家级自然保护区地 表土壤冻结天数时空变化特征[J]. 生态学杂志, 2020, 39(4): 1121-1129. (DU J, ZHOU K S, Ciwangdunzhu. Spatial and temporal variations of surface soil freezing days in Chang Tang Natural Reserve of Tibet during 1981-2018[J]. Chinese Journal of Ecology, 2020, 39(4): 1121-1129. (in Chinese)) DOI: 10.13292/j.1000-4890.202004.030.

Evaluation for short-duration freeze-thaw events of seasonally frozen soil in the headstreams of Nujiang River

ZHOU Wei^{1,2}, WENG Baisha^{2,3}, YAN Denghua^{2,3}, LUAN Qinghua⁴

(1. Hebei Key Laboratory of Intelligent Water Conservancy, Hebei University of Engineering, Handan 056038, China; 2. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research(IWHR), Beijing 100038, China; 3. Yinshanbeilu National Field Research Station of Steppe Eco-hydrological System, China Institute of Water Resources and Hydropower Research, Hohhot 010020, China; 4. College of Agricultural Science and Engineering,

Hohai University, Nanjing 210098, China)

Abstract: Seasonally frozen soil is widely distributed in Qinghai-Tibet Plateau and soil freeze-thaw events occur frequently in the headstream of Nujiang River. Due to the large altitude difference and the asynchrony of meteorological changes between different regions in the headstream region, the occurrence of freeze-thaw events has different characteristics and certain regularities in time and space.

To explore the characteristics of freeze-thaw in seasonally frozen soil, the short-duration freeze-thaw events that occurred in the 5 cm surface soil of 4 typical experimental fields of the headstream region were selected. The connotation of the short-duration freeze-thaw events was clarified and a specific identification method for these events was proposed. The characteristics of events were evaluated and the evaluation was formed by five aspects: The start and end time, the total duration, the total number of times, the cycle frequency, and the intensity. In the intensity evaluation, the Copula function method was used to combine three single indexes of temperature difference, humidity difference, and duration to construct a more comprehensive and efficient comprehensive index, and the two different processes of freeze and freeze-thaw are evaluated separately.

The evaluation results showed that from September 1, 2019, to August 31, 2020, the short-duration freeze-thaw events in the 4 typical experimental fields had a maximum difference of 45 days in the start time and 64 days in the end time. The maximum difference in the total duration, the total number of times and the cycle frequency can reach 112 days, 79 times, and 0.058 times/day, respectively. The maximum difference in the cumulative intensity and the maximum intensity can reach 50.991 and 0.034 for the freezing process, 50.991 and 0.034 for the freeze-thaw process.

The characteristics of short-duration freeze-thaw events in different geographical locations in the headstream of Nujiang River are different. The events in the middle-altitude area (4 500 - 5 000 m.a.s.l.) showed regularity with a longer total duration, higher total number of times, cycle frequency, and accumulation intensity than the events in the low-altitude area (< 4500 m.a.s.l.) and the high-altitude area (> 5 000 m.a.s.l.). High-frequency or high-intensity events can greatly affect or even destroy the soil environment. In this regard, more attention should be paid to freeze-thaw monitoring and protection in the northern part of the basin. Freeze and freeze-thaw were two processes with different intensity effects, and evaluated respectively can avoid the problem of weakened strength. The results are conducive to clarifying the freeze-thaw characteristics of seasonally frozen soil in the plateau alpine region, and reflecting the impact of short-duration freeze-thaw events, providing support for water and soil conservation, frost heaving, thaw collapsing hazards prevention and control in the headstream.

Key words: seasonal frozen soil; freeze-thaw event; Copula function; theadstreams of Nujiang River