王瑾彤, 曾献奎, 吴吉春. 多孔介质中多环芳烃与细菌共运移数值模拟[J]. 南水北调与水利科技(中英文), 2024, 22(1): 122-130. WANG J T, ZENG X K, WU J C. Numerical simulation of polycyclic aromatic hydrocarbons and bacteria co-transport in porous media[J]. South-to-North Water Transfers and Water Science & Technology, 2024, 22(1): 122-130. (in Chinese)

多孔介质中多环芳烃与细菌共运移数值模拟

王瑾彤,曾献奎,吴吉春

(南京大学地球科学与工程学院,南京 210023)

摘要:地下水中微生物等胶体对多环芳烃的运移具有促进作用,为进行多环芳烃污染的精准、高效修复,需要建立 准确、可靠的多环芳烃与细菌胶体共运移数值模拟模型。研究基于室内砂柱荧蒽运移系列实验,采用 Hydrus 中 Colloid-Facilitated Solute Transport(C-Ride)模块构建荧蒽与细菌 FA1 共运移数值模型,并采用马尔科夫链蒙特卡 洛方法(Markov Chain Monte Carlo, MCMC)进行模型参数不确定性分析,定量刻画荧蒽在水动力和微生物胶体作 用下的运移过程。结果表明:基于 Hydrus C-Ride 模块和 MCMC 参数不确定性分析,能够准确地刻画荧蒽和细菌 FA1 的共运移过程;细菌 FA1 促进了荧蒽在多孔介质中的迁移速度,且导致荧蒽在多孔介质中运移回收率的增加, 即由 55.06% 提升至 76.16%,其中吸附至可移动胶体迁移和随水流迁移贡献的回收率分别为 41.46%、34.69%。研 究成果对于指导地下水污染微生物修复方案的优化设计具有重要的理论和现实意义。

关键词:细菌胶体;荧蒽;共运移;数值模拟;马尔科夫链蒙特卡洛方法

中图分类号: TV11 文献标志码: A **DOI**: 10.13476/j.cnki.nsbdqk.2024.0014

多环芳烃(polycyclic aromatic hydrocarbons, PAHs) 是指由两个及两个以上苯环稠合而成的碳氢化合物^[1-2],具有高疏水、难降解、强致癌等特点,属于典型持久性有机污染物,已成为国内外环境领域研究 热点。美国环保署将16种多环芳烃列为优先控制 污染物^[3],且我国土壤及地下水环境中多环芳烃污 染已引起广泛关注^[4]。生物修复技术由于成本低、 环境友好等,在有机污染修复中具有广泛的应用前 景^[5-6]。已有研究^[7]表明,微生物降解是去除地下水 环境中 PAHs 的主要途径之一。

污染物运移数值模拟是场地污染风险评估与修 复的重要工具。地下水中多环芳烃运移数值模拟 已得到广泛研究: Liedl 等^[8]基于 MT3D 分析了含水 层不同岩性对菲在固相介质中的吸附/解吸效果的 影响; 庞雅婕^[9]分别采用 Hydrus 和 MT3DMS 研究 了多环芳烃(菲、苯并芘)在包气带和饱和带含水介 质中的迁移规律。微生物在地下环境中通常被看 作胶体,目前胶体运移模拟多以对流-弥散理论为基 础^[10],如:Kouznetsov等^[11]通过耦合吸附、衰减反应的对流-弥散方程模拟废水灌溉条件下大肠杆菌等细菌在土柱中的迁移规律;Eisfeld等^[12]采用Hydrus1D描述了3种植物病原菌和大肠杆菌在石英砂介质中的运移过程。

可移动胶体促进污染物迁移是污染物在地下环 境中迁移的重要机制,如重金属^[13]、有机化合物^[14] 等污染物。微生物胶体可为多环芳烃迁移提供载 体,促进污染物迁移范围扩大,加剧地下水污染的 环境风险,已引起学者^[15-16]关注。Gilbert等^[17]从微 观尺度发现具备游动能力的细菌可以加速多环芳 烃的扩散,且污染物的疏水性越大,促进迁移作用 越显著。另外,多环芳烃吸附在胶体表面,通过改 变胶体表面电位等方式也会影响胶体在介质中的 运移行为,如:Yang等^[18]通过柱实验发现吸附在生 物炭上的萘通过减少生物炭的电势,增强了生物炭 在石英砂介质中的吸附。针对胶体与污染物共运 移过程的数值模拟:Wei等^[19]采用 COMSOL 构建

收稿日期:2023-07-13 修回日期:2023-11-01 网络出版时间:2024-01-29
网络出版地址:https://link.cnki.net/urlid/13.1430.TV.20240126.1423.004
基金项目:国家重点研发计划项目(2020YFC1807000);国家自然科学基金项目(42072272)
作者简介:王瑾彤(1999—),女,山东菏泽人,主要从事水文学与水资源研究。E-mail: mg21290079@smail.nju.edu.cn
通信作者:曾献奎(1985—),男,江西九江人,副教授,博士,主要从事地下水数值模拟研究。E-mail: xiankuizeng@nju.edu.cn

了胶体促进重金属铬迁移的数值模型,研究了变密 度条件下沿海含水层中胶体和铬的迁移、转化规律; Zou等^[20]基于 MATLAB 构建粪便胶体促进抗生素 氟苯尼考迁移模型,结果显示粪便胶体降低了该抗 生素在土壤中的吸附容量。尽管如此,当前未见针 对微生物与多环芳烃共运移数值模拟的研究。同 时,胶体与污染物共运移模型的表现与污染物运移 相关参数的设置密切相关,而当前的共运移模拟通 常未考虑关键参数的不确定性,从而导致模拟结果 存在不确定性。

马尔科夫链蒙特卡洛(Markov Chain Monte Carlo, MCMC)是一种基于贝叶斯理论的参数不确定性分 析方法,通过搜索参数的概率分布空间逐渐获得其 后验分布,被广泛用于地下水/地表水模型的参数 识别^[21-22]。本次研究基于细菌和多环芳烃共运移 砂柱实验,采用 Hydrus 中 Colloid-Facilitated Solute Transport (C-Ride)模块建立细菌和多环芳烃共运移 数值模型,并通过 MCMC 方法进行模型参数的不 确定性分析^[23]。研究成果可以提高细菌和多环芳烃 共运移模型的可靠性,准确量化多环芳烃在微生物 胶体作用下的迁移转化规律,对于指导地下水污染 微生物修复方案的优化设计具有重要的理论和现 实意义。

1 研究方法

1.1 胶体与溶质共运移模拟

采用 Hydrus 的 C-Ride 模块进行细菌与多环芳 烃共运移模拟。C-Ride 包含胶体和溶质在可变饱 和多孔介质中的运移,以及胶体运移促进的溶质运 移过程,其概念模型(图1)基于相关假设^[24]建立。 胶体以3种状态存在:悬浮在液相中可移动、附着 在固相介质上不移动、被固相介质阻塞不移动。污 染物包含4种状态:溶解相、吸附至固相、吸附至可 移动/不可移动胶体。

图 1 胶体-溶质共迁移模型^[25] Fig. 1 Schematic of the colloid-facilitated solute transport model

多孔	介质中	胶体运利	多的控制	方程 ^[26]	为	
$\frac{\partial \theta_{\rm c} C_{\rm c}}{\partial t}$ +	$-\rho \frac{\partial S_{c1}}{\partial t}$	$+\rho \frac{\partial S_{c2}}{\partial t} =$	$=\frac{\partial}{\partial r}\left(\theta D\right)$	$\left(\frac{\partial C_{\rm c}}{\partial r_{\rm c}}\right)$	$-\frac{\partial q_{\rm ic}C_{\rm c}}{\partial r}$	
$\mu_{\rm cw}\theta C_{\rm c}$	$-\mu_{\rm cs}\rho S_{\rm c}$	01	∂x_i	$0x_i$ /	(1)	

式中: C_{e} 为可移动胶体的浓度, mol/cm³; S_{e} 为截留在 固相中胶体的质量摩尔浓度(S_{e1} 表示附着在固相介 质的胶体、 S_{e2} 表示被固相阻塞的胶体), mol/mg; θ_{e} 为胶体可获得的水体积分数(由于尺寸排阻, θ_{e} 小于 水总体积分数 θ), cm³/cm³; ρ 为胶体密度, mg/cm³; q_{ie} 为胶体的达西通量, cm/h; $D_{ij,e}$ 为胶体的水动力弥散 系数, cm²/h; t 表示时间, h; x_{i} 为空间坐标, cm; μ_{ew} 为 液相中胶体衰减常数, h⁻¹; μ_{es} 为固相中胶体衰减常 数, h⁻¹。

方程(1)左侧的第二、三项表示胶体在液相和 固相之间的质量传递过程。Gargiulo等^[27] 假设固相 介质对胶体的截留机制分为动态附着和阻塞两部 分,可分别采用附着-分离模型和不可逆的一阶动力 学模型来描述。

溶解相和胶体促进的污染物运移控制方程[28]为

$$\frac{\partial\theta C}{\partial t} + \rho \frac{\partial S_{e}}{\partial t} + \rho \frac{\partial S_{k}}{\partial t} = \frac{\partial}{\partial x_{i}} \left(\theta D_{ij} \frac{\partial C}{\partial x_{j}}\right) - \rho \frac{\partial q_{i}C}{\partial x_{i}} - \theta k_{amc} \psi_{m}C - \theta k_{aic} \psi_{im}C + \theta_{c} k_{dmc}C_{c}S_{mc} + \rho k_{dic}S_{c}S_{ic} - R_{s2}$$
(2)
$$\frac{\partial\theta_{c}C_{c}S_{mc}}{\partial t} + \rho \frac{\partial S_{e}S_{ic}}{\partial t} = \frac{\partial}{\partial x_{i}} \left(\theta_{c}D_{ij,c} \frac{\partial C_{e}S_{mc}}{\partial x_{j}}\right) - \frac{\partial q_{ic}C_{c}S_{mc}}{\partial x_{i}} - \theta_{c}k_{dmc}C_{c}S_{mc} - \rho k_{dic}S_{c}S_{ic} + \theta k_{amc}\psi_{m}C + \theta k_{aic}\psi_{im}C - R_{s3}$$
(3)

式(2)和(3)中:C为液相中污染物质量浓度,mg/L; S。为吸附至瞬时点位的污染物在多孔介质中的吸附 量(type1), mg/kg; S_k 为吸附至动力点位的污染物在 多孔介质中的吸附量(type2), mg/kg; Di 为溶质水动 力弥散系数, cm²/h; q_i 为水流达西通量, cm/h; x_i 、 x_i 为 空间坐标, cm; k_{dmc}、k_{dic}分别为溶质在可移动和不可 移动胶体上的解吸速率系数, h⁻¹; k_{amc}、k_{aic}分别为 溶质在可移动和不可移动胶体(数量最大)上的 吸附速率系数, h^{-1} ; ψ_m 为 k_{amc} 的调整系数, $\psi_m = \frac{C_c}{C_{c,ref}}$, Cc,ref 为吸附速率达到 kamc 可移动胶体的参考浓 度, mol/cm³; ψ_{im} 为 k_{aic} 的 调 整 系 数, $\psi_{im} = \frac{S_c}{S_{cref}}$, $S_{c,ref}$ 为吸附速率达到kaic时不可移动胶体的参考浓 度, mol/cm³; R_{s} 、 R_{s} 为污染物的反应/降解项, mg/(cm³•d),前者为溶解相或吸附至固相,后者为 吸附至胶体; Smc、Sic 分别为吸附至可移动和不可移 动胶体上的污染物在多孔介质中的吸附量, mg/kg; 其中 S_{ic1}、S_{ic2} 分别对应附着胶体和阻塞胶体。

1.2 模型参数不确定分析方法

MCMC 方法是一种基于贝叶斯理论的参数不确定性分析方法,其通过构建平稳分布的马尔科夫链,来搜索模型参数θ[θ₁,θ₂,…,θ_i]的概率分布空间(*l* 表示模型参数的维数),在搜索过程中结合观测信息*y*,马尔科夫链从模型参数θ的先验分布*p*(θ)逐渐收敛至其后验分布*p*(θ)y)^[29]。

$$p(\theta|y) = \frac{p(\theta)L(\theta|y)}{\int p(\theta)L(\theta|y)d\theta}$$
(4)

式中: L(θ|y)表示参数θ的似然函数。

本次研究采取 DREAM₂,算法^[30]进行参数抽样, 该算法采用随机子空间抽样更新的策略,结合差分 进化、多链并行演化、斯诺克更新等方法,抽样效率 高,适用于解决复杂、高维、非线性、多峰分布的模 型参数不确定性分析问题,从而获得模型参数的后 验分布 *p*(θ*y*)。

2 荧菌与细菌共运移模型构建及不确定性 分析

2.1 砂柱实验设置

选择多环芳烃降解菌 Herbaspirillum chlorophenolicum FA1,该菌已被证明对萘、菲、蒽、荧蒽和苯并 芘等多环芳烃有较好的降解能力^[31]。通过光密度值 法测定细菌 FA1 浓度,即使用紫外-可见分光光度 计在 600 nm 波长条件下测定样品吸光度 (OD₆₀₀) 以 代表细菌浓度。设置菌悬液吸光度为 OD₆₀₀=0.6,通 过平板计数方法得到其对应的细菌含量为 1×10⁹ CFU/mL。使用高效液相色谱仪(e2695, Waters, USA)测试荧蒽的质量浓度,测试条件为: C18 柱,流 动相乙腈: 纯水=75:25,流量为 1 mL/min, PDA 检 测器, 检测波长为 236 nm。

砂柱实验使用聚四氟乙烯柱,柱内径 2.5 cm,柱高 12 cm,柱子顶底两端均放置有 50 μm 的不锈钢 滤网。记录装柱前后石英砂和超纯水的质量,通过 质量平衡计算砂柱的死端体积和孔隙体积(PV)(孔 隙体积是一个无量纲的时间量),装填后砂柱平均 孔隙度为 0.36,砂柱密度为 1.69 g/cm³。砂柱底端连 接蠕动泵控制砂柱内溶液的流动方向(向上),流量 恒定为 1.0 mL/min。实验开始前使用 1 mmol/L NaCl 背景溶液冲洗 10 个 PV 以上,以保证介质水 化学条件达到平衡。

(1) 细菌 FA1 土柱运移实验。以 1 mL/min 的流 速向砂柱注入 20 个 PV 细菌 FA1 菌悬液, 随后切换 成2个PV不含细菌的NaCl背景溶液继续注入, (22~26)个 PV 注入纯水。使用自动部分收集器每隔 4 min 收集 1 次流出液, 取其中 2 mL 在 600 nm 条件 下测试细菌浓度。(2)荧菌土柱运移实验。以 1 mL/min 的流速向砂柱注入 2 个 PV 荧葱溶液, 随 后切换成 18 个 PV 不含荧菌的 NaCl 背景溶液继续 注入,(20~24)个 PV 注入纯水。使用自动部分收集 器每隔4min收集1次流出液,取其中2mL测量荧 蔥质量浓度。(3)细菌胶体作用下荧菌土柱运移 实验。以1mL/min的流速向砂柱注入2个PV含 0.2 mg/L 荧菌的细菌 FA1 菌悬液, 随后切换成 18 个 PV 不含荧蒽的菌悬液继续注入,(20~22)个 PV 注入不含细菌的 NaCl 背景溶液, (22~26)个 PV 注 入纯水。使用自动部分收集器每隔4min收集1次 流出液并测量细菌 FA1 和荧蔥浓度。

2.2 数值模型的构建

2.2.1 胶体运移数值模型

使用 Hydrus 1D 中双点位动力学模型模拟细菌 FA1 在饱和砂柱中的运移过程,采用 Van Genuchten-Mualem 模块刻画水流运动。砂柱的上、下边界均 设置为定水头边界,多孔介质的水力参数设置见表 1, 参数包含 θ_r (残留水体积分数), θ_s (饱和水体积分数), a_x $n(土壤水分函数参数), K_s(渗透系数), L(曲折度参数)。$

表 1 模型水力参数设置 Tab. 1 Setting of soil hydraulic parameters

参数	$\theta_r/(\mathrm{cm}^3 \cdot \mathrm{cm}^{-3})$	$\theta_{\rm s}/({\rm cm}^3 {\cdot} {\rm cm}^{-3})$	α/cm^{-1}	п	$K_{\rm s}/({\rm cm} \cdot {\rm h}^{-1})$	L
参数值	0.083	0.36	0.145	2.68	10.427	0.5

对于溶质运移模拟, 入流边界为给定质量浓度 边界, 出流边界为零质量浓度梯度边界(自由出流)。 待识别的未知参数包括纵向弥散度 α_L 、分子扩散系 数 D_W 、以及双点位吸附的参数 S_{max2} 、 K_{ac2} 、 K_{dc2} 、 S_{max1} 、 K_{ac1} 、 K_{dc1} 。根据 Schijven 等^[32-33]的系列试验得出的 细菌运移过程双点位吸附相关参数的经验范围, 设 置 D_W 范围为 [1.2×10^{-4} , 1.14×10^{-2}] cm²/min, K_{ac1} 范围 为 [1.0×10^{-4} , 5.81] min⁻¹, K_{dc1} 范 围 为 [5.7×10^{-7} , 6.4×10^{-5}] min⁻¹, K_{ac2} 范围为 [1.0×10^{-3} , 1.45] min⁻¹, K_{dc2} 范围为 [1.5×10^{-4} , 0.036] min⁻¹。采用 Hydrus 的参数 反演模块, 观测数据(共 126 个)中第 1~59 个为识别 数据, 第 60~126 为验证数据, 参数识别结果见表 2。

术用伏定示数 K 、均力依误差 E_{RMS} 指协伴饥快型
的预测表现。
表 2 细菌 FA1 运移模型参数反演结果
Tab. 2 Inversion values of parameters for bacterial FA1 transport model
参数 $\alpha_{\rm L}/{ m cm} D_{\rm W}/({ m cm}^2 \cdot { m h}^{-1}) S_{\rm max2} K_{\rm ac2}/{ m h}^{-1} K_{\rm dc2}/{ m h}^{-1} S_{\rm max1} K_{\rm ac1}/{ m h}^{-1} K_{\rm dc1}/{ m h}^{-1}$
反演结果 1 032 0 358 0 294 3 628 1 000 0 556 0 428 3 6e-05

评价结果显示:识别期 R²达到 0.969, E_{RMS} 为 0.043;验证期 R²达到 0.911, E_{RMS} 为 0.12。这表明参 数识别后的模型能够较好地刻画砂柱中 FA1 的运 移规律。图 2 为细菌 FA1 穿透曲线的观测值和模 拟值,显示在实验末期,模型预测误差偏大,这可能 是由于模型未考虑离子强度对细菌运移的影响,从 而导致细菌运移的模拟偏差。

2.2.2 荧蒽运移数值模型

使用 Hydrus 1D 中耦合 Freundlich 方程的双点 位吸附模型模拟荧蒽在饱和砂柱中的运移过程。 水流运动模拟及参数设置同 2.2.1 小节。双点位吸 附模型将吸附点位分为两部分,在 type-1 点位发生 平衡(瞬时)吸附,在 type-2 点位发生一阶动力学吸 附。待识别的未知参数包括 *D*(溶质分子扩散系数)、 *f*(平衡吸附点位占总吸附点位的比例)、*k*_d(等温吸 附系数)、β(Freundlich 指数)、*α*_k(非平衡吸附的一 阶速率常数)。采用 Hydrus 参数反演模块,将观测 数据(共 111 个)的前 50 个作为识别数据,后 61 个 用于验证数据,参数识别结果见表 3。

表 3 荧菌运移模型参数反演结果

Tao. 5 Inve	Ision values of	parameter	s for fluorant	nene trans	sport model
参数	$D/(\mathrm{cm}^2 \cdot \mathrm{h}^{-1})$	f	$k_{\rm d}/({\rm L}\bullet{\rm g}^{-1})$	β	$\alpha_{\rm k}/{\rm h}^{-1}$
反演结果	0.02	0.177	7.933	0.873	0.083 8

评价结果显示: 识别期 R²达到 0.976, E_{RMS} 为 0.007 32; 验证期 R² 为 0.879, E_{RMS} 为 0.002 95。图 3

为荧蒽穿透曲线的观测值和模拟值,显示整体拟合效果较好,但实验的初期和末期存在模拟偏差。初期持续注入荧蒽溶液,部分荧蒽未充分附着至固相介质而率先出流,导致观测数据偏大。后期观测数据值较小且波动幅度较大,表示存在数据观测误差。 荧蒽在饱和石英砂柱中发生双点位吸附,type-1点位占比 17.7%,type-2点位占比 82.3%,总回收率为55.06%。

图 3 汉恩在旭和石央的广质中的运移穿透曲线 Fig. 3 Breakthrough curves for the transport of fluoranthene in saturated quartz sand media

2.2.3 荧蒽-细菌 FA1 共运移模型及参数不 确定性分析

采用 Hydrus 中 C-Ride 模块构建细菌 FA1 与荧 菌在饱和多孔介质中的共迁移模型,水流运动模拟 及水力参数设置同 2.2.1 小节。该多孔介质中存在 3 种溶质:细菌 FA1、附着在细菌 FA1 上的荧蒽和溶 解相荧蒽。杨志东^[34]研究证明,低浓度荧蒽条件下, 对 FA1 运移基本没有影响。由于共存时间短且营 养物质或底物缺乏,可以忽略 FA1 对荧蒽的降解作用。

模型共涉及3组溶质运移相关参数:对于FA1, 忽略荧蒽对其运移过程的影响,其反应参数设置同 表2;对于附着在FA1上的荧蒽,一部分吸附至可移 动细菌胶体随之迁移,一部分附着至非移动细菌胶 体被截留在固相介质中,相关参数包括ψ_{im}、k_{aic}、k_{dic}、 ψ_m、k_{ame}、k_{dme},将其设置为待识别未知参数;对于溶 解相荧蒽,在细菌胶体存在条件下,其吸附参数与 单独运移时存在差异,包括f、k_d、β等,将其设置为 待识别未知参数。

采用基于 DREAMzs 算法 MCMC 识别荧蒽、 FA1 共运移模型未知参数的后验分布,参数先验分 布设置为均匀分布,分布范围见表 4。本次 MCMC 中共设置 3 条平行的马尔科夫链,每条链的长度为 1 000,其中预热期长度为 1 000。砂柱实验共有 129 个观测数据,前 50 个为识别数据,剩余 79 个为 验证数据。图 4 为基于 MCMC 识别得到的参数后 验分布。图 5 为基于 MCMC 得到的细菌 FA1 存在 条件下荧蒽穿透曲线的 95% 置信区间。利用置信 区间的均值计算 R²、E_{RMS}: 识别期 R² 为 0.976, E_{RMS} 为 0.015 6; 验证期 R² 为 0.923, E_{RMS} 为 0.003 7。拟 合效果较好, 仅在峰值处出现高估现象。

表 5 为采用 MCMC 识别得到具有最大似然值的参数组,基于该组参数得到砂柱中 4 种不同状态(溶解相、吸附至固相、吸附至可移动/不可移动胶体)的荧蒽穿透曲线(图 6)。根据图 6 可以得到荧 菌单独运移时:在 5.00 个 PV 时出流质量浓度达到峰值(C/C₀ = 0.17),占总回收率的 25.3%;在 6.94 个 PV 时达到总回收率的 50%;在 16.11 个 PV 时达到总回收率的 90%。共运移条件下:在 4.16 个 PV 时出流质量浓度达到峰值(C/C₀ = 0.33),占总回收率的 24.87%;在 5.51 个 PV 时达到总回收率的 90%。荧蒽单独运移时,出流回收率为 55.06%,剩余 44.94% 被固相

介质截留。荧蒽共运移时,总回收率达到 76.16%, 其中,吸附至可移动胶体迁移而贡献的回收率为 41.46%,随水流迁移(溶解相)贡献的回收率为 34.69%,剩余 23.84% 截留至多孔介质中。由此可 见,细菌胶体显著促进了荧蒽在多孔介质中的 迁移。

表 4 荧菌-FA1 共运移模型参数先验分布

Tab. 4	Prior distribution of parameters of fluoranthrene-FA1
	cotransport model

	-
参数	先验范围
$\psi_{ m im}$	[0.10, 1.00]
$k_{ m aic}/{ m h}^{-1}$	[0.10, 20.00]
$k_{ m dic}/{ m h}^{-1}$	[0.10, 20.00]
$\psi_{ m m}$	[0.10, 1.00]
$k_{ m amc}/{ m h}^{-1}$	[0.10, 20.00]
$k_{ m dmc}/{ m h}^{-1}$	[0.10, 20.00]
$k_{\rm d}/({\rm L}\bullet{\rm g}^{-1})$	[0.10, 5.00]
β	[0.10, 1.00]
f	[0.10, 1.00]

同时,多孔介质中微生物迁移速率显著高于污染物迁移速率,共运移条件下,(0~2.5)个 PV 荧蒽 主要以吸附在可移动胶体的形式发生迁移,并分别 以11.175 h⁻¹、6.562 h⁻¹的速率系数在不可移动胶体 上发生吸附、解吸,分别以16.945 h⁻¹、11.962 h⁻¹的 速率系数在移动胶体上发生吸附、解吸。2.5 个 PV 以后,对流-弥散作用和细菌胶体促进作用共同控制 了多孔介质中荧蒽的运移过程。因此,共运移机制 对于准确刻画多孔介质中荧蒽的迁移规律具有重要 影响。

图 5 细菌 FA1 存在条件下的荧蒽穿透曲线 Fig. 5 Breakthrough curve of fluoranthene in the presence of

bacterial FA1

表 5 荧蒽-细菌 FA1 共运移模型参数识别结果 (最大似然值)

Tab. 5 Parameter identification results of co-transport model of fluoranthene-bacterial FA1 (maximum likelihood value)

参数	$\psi_{ m im}$	$k_{\rm aic}/{\rm h}^{-1}$	$k_{ m dic}/ m h^{-1}$	ψ_{m}	$k_{\rm amc}/{ m h}^{-1}$	$k_{ m dmc}/ m h^{-1}$	$k_{\rm d}/({\rm L}\bullet{\rm g}^{-1})$	β	f
识别结果	0.667	11.175	6.562	0.826	16.945	11.962	2.023	0.361	0.258

Fig. 6 Analysis of breakthrough curves of fluoranthene

3 结论

本次研究针对细菌胶体存在条件下的多孔介质 中多环芳烃运移模拟,采用 Hydrus C-Ride 模块构建 了荧蒽与细菌 FA1 共运移数值模型,并利用 MCMC 进行模型参数不确定性分析,有效提高了共运移模 型预测的可靠性与准确性。根据研究结果,得出以 下结论:

基于 Hydrus C-Ride 模块和 MCMC 参数不确定 性分析,能够准确的刻画砂柱中细菌 FA1 胶体存在 条件下的荧蒽运移过程,并获得 4 种不同状态(溶解 相、吸附至固相、吸附至可移动/不可移动胶体)的 荧蒽质量浓度分布。

细菌 FA1 胶体促进了荧蒽在多孔介质中的迁移速度。荧蒽单独运移时,5.00 个 PV 时出流质量

浓度达到峰值(*C*/*C*₀ =0.17), 16.11 个 PV 时达到总 回收率的 90%。共运移条件下,在 4.16 个 PV 时出 流质量浓度达到峰值(*C*/*C*₀ = 0.33), 12.63 个 PV 时 达到总回收率的 90%。

细菌 FA1 胶体导致荧蒽在多孔介质中运移回 收率的增加。砂柱实验中,荧蒽单独运移的回收率 为 55.06%,荧蒽共运移的回收率达到 76.16%,其中, 吸附至可移动胶体迁移贡献的回收率为 41.46%,随 水流迁移贡献的回收率为 34.69%。

基于上述结论可知,细菌等胶体的促进作用可 能导致地下水中多环芳烃迁移速度的提升,扩大污 染晕的分布范围。准确识别及量化细菌胶体和多 环芳烃的共运移机制,有利于精准刻画地下水中多 环芳烃的迁移转化规律,为场地污染高效修复提供 理论支撑。

参考文献:

- KOTTWSKI M, HILBER I, BUCHELI T D, et al. Activated biochars reduce the exposure of polycyclic aromatic hydrocarbons in industrially contaminated soils[J]. Chemical Engineering Journal, 2017(310): 33-40. DOI: 10.1016/j.cej.2016.10.065.
- [2] 张世伟,李炳华,张大胜,等.北京市北运河流域河水和地下水多环芳烃分布规律及风险评价[J].南水北 调与水利科技(中英文),2021,19(1):179-190.DOI: 10.13476/j.cnki.nsbdqk.2021.0018.
- YANG W, QU T, FLURY M, et al. PAHs sorption to biochar colloids changes their mobility over time[J].
 Journal of Hydrology, 2021(603): 126839. DOI: 10. 1016/j.jhydrol.2021.126839.
- [4] 马妍,程芦,阮子渊,等.近20年中国表层土壤中多环 芳烃时空分布特征及源解析[J].环境科学,2021, 42(3):1065-1072. DOI: 10.13227/j.hjkx.202010190.
- [5] 滕彦国, 胡竞丹, 郑富新, 等. 铀矿区地下水污染治理 与修复技术研究进展[J]. 南水北调与水利科技(中 英文), 2022, 20(5): 886-901. DOI: 10.13476/j.cnki. nsbdqk.2022.0089.
- [6] 李宵慧. 典型功能微生物FA1在饱和多孔介质中的 运移行为及其影响机制研究[D]. 南京: 南京大学, 2019. DOI: 10.27235/d.cnki.gnjiu.2019.000094.
- [7] 程国玲,李培军,王凤友,等.多环芳烃污染土壤的植物与微生物修复研究进展[J].环境污染治理技术与设备,2003,4(6):30-36.DOI:10.3969/j.issn.1673-9108.2003.06.009.
- [8] LIEDL R, PTAK T. Modelling of diffusion-limited retardation of contaminants in hydraulically and lithologically nonuniform media[J]. Journal of Contaminant Hydrology, 2003, 66(3-4): 239-259. DOI: 10. 1016/S0169-7722(03)00028-7.
- [9] 庞雅婕. 多环芳烃在垃圾填埋场孔隙介质中迁移规 律的研究[D]. 北京: 中国地质科学院, 2013.
- [10] ZHONG H, LIU G, JIANG Y, et al. Transport of bacteria in porous media and its enhancement by surfactants for bioaugmentation: A review[J]. Biotechnology Advances, 2017, 35(4): 490-504. DOI: 10. 1016/j.biotechadv.2017.03.009.
- [11] KOUZNETSOV M Y, PACHEPSKY Y A, GILLER-MAN L, et al. Microbial transport in soil caused by surface and subsurface drip irrigation with treated wastewater[J]. International Agrophysics, 2004, 18(3).

- [12] EISFELD C, SCHIJVEN J F, VAN DER WOLF J M, et al. Removal of bacterial plant pathogens in columns filled with quartz and natural sediments under anoxic and oxygenated conditions[J]. Water Research, 2022(220): 118724. DOI: 10.1016/j.watres. 2022.118724.
- [13] GROLIMUND D, BORKOVEC M. Colloid-facilitated transport of strongly sorbing contaminants in natural porous media: Mathematical modeling and laboratory column experiments[J]. Environmental Science & Technology, 2005, 39(17): 6378-6386.
- [14] KAN A T, TOMSON M B. Ground water transport of hydrophobic organic compounds in the presence of dissolved organic matter[J]. Environmental Toxicology and Chemistry, 1990, 9(3).
- YAN C, NIE M, YANG Y, et al. Effect of colloids on the occurrence, distribution and photolysis of emerging organic contaminants in wastewaters[J]. Journal of Hazardous Materials, 2015, 299(15): 241-248.
- [16] SEETHA N, KUMAR M S M, HASSANIZADEH S M. Modeling the co-transport of viruses and colloids in unsaturated porous media[J]. Journal of Contaminant Hydrology, 2015, 181: 82-101. DOI: 10.1016/j. jconhyd.2015.01.002.
- [17] GILBERT D, JAKOBSEN H H, WINDING A, et al. Co-transport of polycyclic aromatic hydrocarbons by motile microorganisms leads to enhanced mass transfer under diffusive conditions[J]. Environmental Science & Technology, 2014, 48: 4368-4375.
- [18] YANG W, WANG Y, SHANG J, et al. Antagonistic effect of humic acid and naphthalene on biochar colloid transport in saturated porous media[J]. Chemosphere, 2017, 189: 556-564. DOI: 10.1016/j.chemosphere.2017.09.060.
- [19] WEI Y, XU X, ZHAO L, et al. Numerical modeling investigations of colloid facilitated chromium migration considering variable-density flow during the coastal groundwater table fluctuation[J]. Journal of Hazardous Materials, 2023, 443: 130282. DOI: 10. 1016/j.jhazmat.2022.130282.
- [20] ZOU Y, ZHENG W. Modeling manure colloid-facilitated transport of the weakly hydrophobic antibiotic florfenicol in saturated soil columns[J]. Environ-

mental Science & Technology, 2013, 47(10): 5185-5192.

- [21] ARORA B, MOHANTY B P, MCGUIRE J T. Uncertainty in dual permeability model parameters for structured soils[J]. Water Resources Research, 2012, 48(1).
- [22] 曹飞凤,张世强,许月萍,等.基于SCEM-UA算法和 全局敏感性分析的水文模型参数优选不确定性研 究[J].中山大学学报(自然科学版),2011,50(2): 120-126.
- [23] HASSAN A E, BEKHIT H M, CHAPMAN J B. Using Markov Chain Monte Carlo to quantify parameter uncertainty and its effect on predictions of a groundwater flow model[J]. Environmental Modelling & Software, 2009, 24(6): 749-763.
- [24] WEERD H V D, LEIJNSE A. Assessment of the effect of kinetics on colloid facilitated radionuclide transport in porous media[J]. Journal of Contaminant Hydrology, 1997, 26(1-4): 245-256. DOI: 10. 1016/S0169-7722(96)00072-1.
- [25] SIMUNEK J, SEJNA M, VAN GENUCHTEN M T. The C-Ride module for HYDRUS (2D/3D) simulating two-dimensional colloid-facilitated solute transport in variably-saturated porous media, Version 1.0[Z]. PC Progress, Prague, 2012.
- [26] BRADFORD S A, SIMUNEK J, BETTAHAR M, et al. Modeling colloid attachment, straining, and exclusion in saturated porous media[J]. Environmental Science & Technology, 2003, 37(10): 2242-2250.
- [27] GARGIULO G, BRADFORD S, SIMUNEK J, et al. Bacteria transport and deposition under unsaturated conditions: The role of the matrix grain size and the

bacteria surface protein[J]. Journal of Contaminant Hydrology, 2007, 92(3-4): 255-273. DOI: 10.1016/j. jconhyd.2007.01.009.

- [28] SIMUNEK J, HE C, PANG L, et al. Colloid-facilitated solute transport in variably saturated porous media: Numerical model and experimental verification[J]. Vadose Zone Journal, 2006, 5(3): 1035-1047. DOI: 10.2136/vzj2005.0151.
- [29] BOX G E P, TIAO G C. Bayesian inference in statistical analysis [M]. John Wiley & Sons, 2011.
- [30] ZENG X, WU J, WANG D, et al. Assessing the pollution risk of a groundwater source field at western Laizhou Bay under seawater intrusion[J]. Environmental Research, 2016, 148: 586-594. DOI: 10.1016/ j.envres.2015.11.022.
- [31] SHEN C, LI B, WANG C, et al. Surface roughness effect on deposition of nano- and micro-sized colloids in saturated columns at different solution ionic strengths[J]. Vadose Zone Journal, 2011, 10(3): 1071-1081. DOI: 10.2136/vzj2011.0011.
- [32] SCHIJVEN J F, HASSANIZADEH S M, BRUIN R H A M D. Two-site kinetic modeling of bacteriophages transport through columns of saturated dune sand[J]. Journal of Contaminant Hydrology, 2002, 57(3-4): 259-279. DOI: 10.1016/S0169-7722(01) 00215-7.
- [33] SCHIJVEN J F, SIMUNEK J. Kinetic modeling of virus transport at the field scale[J]. Journal of Contaminant Hydrology, 2002, 55(1-2): 113-135. DOI: 10.1016/S0169-7722(01)00188-7.
- [34] 杨志东. 功能菌FA1与典型有机污染物在石英砂介 质中的共运移行为研究[D]. 南京: 南京大学, 2021.

Numerical simulation of polycyclic aromatic hydrocarbons and bacteria co-transport in porous media

WANG Jintong, ZENG Xiankui, WU Jichun

(School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023 China)

Abstract: The co-transport of polycyclic aromatic hydrocarbons (PAHs) with bacterial colloids plays a facilitating role in the precise and efficient remediation of PAH pollution. It is crucial to establish an accurate and reliable numerical simulation model for the co-transport of PAHs and bacterial colloids. A numerical model was constructed for the co-transport of fluoranthene (a type of PAH) and bacterium FA1 using the Colloid-Facilitated Solute Transport (C-Ride) module in Hydrus. Uncertainties in the model parameters were analyzed through the Markov Chain Monte Carlo (MCMC) method, allowing for a quantitative depiction of the transport processes of

fluoranthene influenced by water dynamics and microbial colloidal interactions.

A series of indoor column experiments were conducted to investigate the transport of fluoranthene. The numerical model for the co-transport of fluoranthene and bacterium FA1 was constructed using the Hydrus C-Ride module. The MCMC method was applied to analyze parameter uncertainties, enabling a comprehensive understanding of the transport processes of fluoranthene under the influence of water dynamics and microbial colloidal interactions.

The results demonstrated that bacterium FA1 enhanced the migration velocity of fluoranthene in the porous medium and increased the recovery rate of fluoranthene transport within the porous medium. The recovery rate increased from 55.06% to 76.16%. Specifically, the contribution of fluoranthene adsorbed onto mobile colloids and transported with water flow accounted for 41.46% and 34.69% of the recovery rate, respectively.

The research findings hold both theoretical and practical significance in guiding the optimization design of microbial remediation strategies for groundwater pollution. The establishment of a numerical model provides a reliable tool for accurately characterizing the co-transport process of fluoranthene and bacterium FA1. These insights shed light on the understanding of PAH transport influenced by microbial colloidal interactions in porous media and contribute to the development of effective and efficient strategies for remediating PAH-contaminated groundwater.

Key words: bacterial colloid; fluoranthene; co-transport; numerical simulation; Markov Chain Monte Carlo