

DOI: 10.13476/j.cnki.nsbdqk.2017.06.011

王永刚, 伍娟丽, 王旭, 等. 北京市中心城河流表层 沉积物 重金属 污染评价[J]. 南水北 调与水利科技, 2017, 15(6): 74 80, 107. WANG Y G, WU JL, WANG X, et al. Assessment on heavy metal pollution of the surface sediments from rivers in Beijing central district[J]. South to North Water Transfers and Water Science & Technology, 2017, 15(6): 74 80, 107. (m Chinese)

北京市中心城河流表层沉积物重金属污染评价

王永刚^{1,2,3}, 伍娟丽^{2,3}, 王 旭^{2,3}, 徐 菲^{2,3}, 李焕利^{2,3}

(1、天津大学环境科学与工程学院,天津 300072; 2. 北京市环境保护科学研究院,北京 100037;3. 国家城市环境污染控制工程技术研究中心,北京 100037)

滴要:为了解北京市中心城河流表层沉积物中重金属污染现状,采用地累积指数法、主成分分析法、潜在生态风险指数法评价和分析了沉积物中汞、砷、铅、铬、镉、锰、铜 7 种重金属的污染程度、污染来源及潜在生态风险。结果表明,重金属平均含量为 Hg 0 670 mg/kg, As 6 01 mg/kg, Pb 31 1 mg/kg, Cr 63 mg/kg, Cd 0 29 mg/kg, Mn 277 mg/kg, Cu 45 mg/kg; 平均地累积指数排序为 Hg(1 49) > Cr(0 34) > Cu(0 24) > Cd(0 14) > Pb(-0 77) > As (-1 41) > Mn(-2 30), 沉积物主要受 Hg、Cr、Cu、Cd的污染, Hg处于中等污染程度, Cr、Cu、Cd 处于轻度 中等污染程度, 污染主要来源于三方面: 交通、汽配(修)及供暖燃煤。重金属平均潜在生态风险系数排序为 Hg(357) > Cd (80) > Cu(13) > As(9) > Pb(7) > Cr(4) > Mn(2), 中心城沉积物潜在生态风险指数平均值为 472, 总体上具有较强 生态危害。

关键词: 沉积物; 重金属; 地累积指数; 主成分分析; 来源; 生态风险
中图分类号: X503 文献标识码: A 文章编号: 1672 1683(2017) 06 0074 07

Assessment on heavy metal pollution of the surface sediments from rivers in Beijing central district

WANG Yonggang^{1, 2, 3}, WU Juanli^{2, 3}, WANG Xu^{2, 3}, XU Fei^{2, 3}, LI Huanli^{2, 3}

(1. School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China;

2. Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China;

3. Chinese National Engineering Research Center for Urban Environmental Pollution Control, Beijing 100037, China) **Abstract:** To investigate the pollution status of heavy metals in the surface sediments from rivers in Beijing Central District, we used the methods of the Geoaccumulation Index, principal component analysis, and Potential Ecological Risk Index to evaluate the pollution level, pollution sources, and potential ecological risks of the heavy metals including Hg, As, Pb, Cr, Cd, Mn, and Cu, respectively. The results showed that the average contents of the heavy metals were as follows: Hg 0. 670 mg/ kg, As 6.01 mg/ kg, Pb 31. 1 mg/ kg, Cr 63 mg/ kg, Cd 0. 29 mg/ kg, Mn 277 mg/ kg, Cu 45 mg/ kg. The descending order by the average G ear accumulation Index was Hg(1. 49) > Cr(0. 34) > Cu(0. 24) > Cd(0. 14) > Pb(-0. 77) > A s(-1. 41) > Mn(-2. 30), showing that the surface sediments were mainly polluted by Hg, Cr, Cu, and Cd elements, with Hg at moderate pollution level and Cr, Cu, Cd at mild to moderate pollution level. The pollution mainly came from three sources: traffic vehicle repairing, and heating coal combustion. The descending order by the average Potential Ecological Risk Coefficient was Hg(357) > Cd(80) > Cu(13) > As (-9) > Pb(7) > Cr(4) > Mn(2), and the average Potential Ecological Risk Index of the sediments was 472, suggesting strong ecorlogical hazard of the sediments in general.

Key words: sediment; heavy metal; Geoaccumulation Index; principal component analysis; source; ecological risk

收稿日期: 2017-05 21 修回日期: 2017-07 31 网络出版时间: 2017-1F16
网络出版地址: http://kns.cnki.net/kcms/detail/13.1334.TV.20171116.1459.009.html
基金项目: 水体污染控制与治理科技重大专项(2012ZX07203 001-01)
Fund: Major Project of Water Pollution Control and Treatment Science and Technology (2012ZX07203 001-01)
作者简介: 王永刚(1978), 男, 四川资阳人, 副研究员, 主要从事水污染防治技术与规划方面研究。E mail: edward8848@ 163.com

河流沉积物是水体污染物的重要储存库.人类 活动产生的大量重金属等污染物通过污水排放、雨 水径流及大气沉降等途径进入河流水体后, 被水中 的悬浮物或沉积物吸附、络合、絮凝或共沉淀,最终 富集于沉积物中。研究表明,在某些条件下,河流中 99% 的重金属都能以各种不同形态储存于沉积物 中^[1]:沉积物中重金属含量往往比水体中高出数倍. 甚至好几个数量级^[2]。沉积物也是河流重金属等污 染的重要二次污染源,表层沉积物位于水相和固相 界面处,物理化学性质变化频繁,在水动力作用下, 沉积物中富集的重金属又可通过溶解、扩散、解吸、 离子交换等[3]方式重新进入水体当中,影响河流水 质;重金属由于其生物毒性、环境持久性及可生物富 集等特点,能通过食物链放大进一步威胁到陆地生 物及人体健康^[4]。沉积物重金属污染问题引起了国 内外研究者的广泛关注,研究主要集中于河流、湖泊 水库、河口海湾等水域的沉积物中重金属的含量分 布和来源[56]、存在形态[7]及生态风险[8]等方面。

我国大多数城市河道的沉积物中重金属污染问题突出^[910],北京市中心城是人类活动时间长、开发强度大的地区,范围包括东城区、西城区、海淀区(不包括山后地区)、丰台区(不包括河西地区)、石景山区,占地总面积为1085 km²。目前中心城部分河道淤积较为严重,通惠河平均淤深1.0 m,南护城河、北护城河平均淤深07 m,东便门橡胶坝上游淤深1.5 m^[11],受人类活动影响,河道沉积物中重金属污染严重,现有研究中缺少对北京中心城区河流沉积物重金属污染的评估,其污染的潜在生态风险尚不为人所关注,因此对北京中心城河道沉积物中重金属污的染现状进行调查和研究具有重要的现实意义。

本研究以北京中心城主要河道为研究对象,旨 在全面了解中心城区河道沉积物中重金属汞、砷、 铅、铬、镉、锰、铜的污染特征及潜在生态风险,采用 地累积指数法和潜在生态风险指数法对重金属的污 染程度和潜在生态风险进行评价,采用主成分分析 法判断重金属污染来源,以期为北京中心城的水环 境治理及生态风险管理提供科学依据。

1 材料与方法

1.1 沉积物样品采集

于 2016 年 9 月- 10 月对北京市中心城北护城 河、南护城河等 21 条河流的沉积物进行采样,共设 置采样点 42 个(见图 1)。用不锈钢抓泥斗采集表 层沉积物(0~ 10 cm)样品,用聚乙烯密封袋封装, 低温保存运回实验室,在- 20 ℃下冷冻。处理前拣 选去除碎石块、树枝等杂质,经自然风干、研磨、过筛 等处理后备用。

1.2 沉积物样品分析

主要监测项目为Hg、As、Pb、Cr、Cd、Mn、Cu 共7种重金属的含量。Hg、As分析参照HJ680-2013,采用原子荧光法测定(AFS9700);Pb、Cd分 析参照GB/T17141-1997,采用石墨炉原子吸收 分光光度法测定(AA7000F/AAC);Cr、Cu分析分 别参照HJ491-2009及GB/T17138-1997,采用 火焰原子吸收分光光度法测定(AA7000F/AAC); Mn分析参照USEPA3050B:1996及USEPA 6010C:2007,采用电感耦合等离子发射光谱法测定 (OPTIMA 8300DV)。

1.3 评价方法

1.3.1 地累积指数法

地累积指数(*I*_{geo})是由德国科学家 Muller⁽¹²⁾于 1969年提出的用于定量评价沉积物中重金属污染 程度的指标。该指标可以直观地反应外源重金属在 沉积物中的富集程度,其计算公式为.

*I*gm = log2[*Ci*/(*K*×*Bi*)] 式中: *Ci* 是沉积物中重金属元素*i* 的实测值 (mg/kg);*K* 是考虑各地岩石差异可能引起背景值 变化而取的系数(一般取 1.5);*Bi* 为该重金属元素 的环境地球化学背景值(mg/kg),本研究采用北京 地区土壤重金属元素背景值(见表 1)。地累积指数 分级标准及其与重金属污染程度的关系见表 2。

表 1 土壤重金属元素背景值 $(B_i)^{(13-15)}$ 及其毒性系数 $(T_i)^{(16)}$ Tab. 1 Back ground values (B_i) and toxicity coefficients (T_i)

J'N	of heavy metals in the soil										
项目	${ m Hg}$	As	Pb	Cr	Cd	M n	Cu				
背景值	0.08	7.09	24.6	29.8	0.119	571	18.7				
毒性系数	40	10	5	2	30	4	5				

生态与环境 • 75 •

表 2 地累积指数 (I_{go}) 分级标准									
T ab. 2 Grading standard for the Geoaccumulation $\ln dex(I_{geo})$.									
分级标准	级别	污染程度							
$I_{\text{geo}} \leq 0$	0	无污染							
$0 < I_{geo} \leq 1$	1	轻度-中等污染							
$1 < I_{geo} \leq 2$	2	中等污染							
$2 < I_{geo} \leq 3$	3	中等 强污染							
$3 < I_{\text{geo}} \leq 4$	4	强污染							
$4 < I_{\text{geo}} \leq 5$	5	强-极强污染							
$I_{\text{geo}} > 5$	6	极强污染							

1.3.2 潜在生态风险指数法

潜在生态风险指数是由瑞典科学家 Hakanson^[17]于 1980年提出,该指数将重金属含量与生态 危害、生态毒性结合,可以直观地反映沉积物中单种 重金属对环境的影响以及环境中多种重金属的综合 效应,其计算公式为:

 $E_i = T_i \times C_i / B_i$

 $RI = \Sigma E_i$

式中: Ei 为沉积物中重金属 i 的潜在生态风险系数; Ti 为重金属 i 的毒性系数(见表 1); RI 为沉积物中多种重金属的潜在生态风险指数,其分级标准及对应的重金属生态风险程度见表 3。

表 3 潜在生态风险系数(*E_i*)和潜在生态风险指数(*RI*)分级标准

Tab. 3	Grading standards for the Potential Ecological Risk
Coefficie	$ent(E_i)$ and the Potential Ecological Risk Index(RI)

E_i	生态风险度	RI	生态风险程度
$E_i < 40$	轻度	<i>RI</i> < 150	轻度
$40 \leq E_i < 80$	中等	$150 \leq RI < 300$	中等
80 <i>≤Ei</i> < 160	较强	$300 \leq EL \leq 600$	较强
$160 \leq E_i < 320$	很强		伯辺
$E_i \ge 320$	极强	RI ≢600	很独

1.3.3 主成分分析法

主成分分析是利用降维思维,在较少损失原有 信息的基础上,将原本多个彼此相关的变量转化成 少数几个彼此独立的综合变量的一种多元统计方 法。本研究采用 SPSS22 进行主成分分析,通过选 取累计方差贡献率大于 85% 的前几个因子或者特 征根大于1的因子,根据原始变量在各主成分中的 因子载荷大小来判断各主成分的主要影响因素及其 代表的可能来源。

2 结果与讨论

2.1 沉积物中重金属含量

北京中心城河流沉积物中重金属含量见表 4,

其含量范围分别为: Hg(0 028~ 3 220) mg/kg, As (0.47~54 40) mg/kg, Pb(0.4~118.8) mg/kg, Cr (11~191) mg/kg, Cd(0 013~1.32) mg/kg, Mn (1.3~575) mg/kg, Cu(6.0~162 5) mg/kg; 平均含 量分别为: Hg0 670 mg/kg, As 6 01 mg/kg, Pb 31.1 mg/kg, Cr 63 mg/kg, Cd 0.29 mg/kg, Mn 277 mg/kg, Cu 45 mg/kg。变异系数分别为 118%、 138%、79%、46%、97%、52%、85%, Hg、As、Cd、 Cu、Pb 变异系数较大,表明其受人类活动影响的程 度较大。

参考北京市土壤背景值, Hg、As、Pb、Cr、Cd、 Mn、Cu 最大超标倍数分别为 39 25、6 67、3.83、 5 41、10 09、0 01、7.69, 超标点位占比分别为 83.3%、23 8%、50%、92.9%、69.0%、2 4%、 76.2%。参考《土壤环境质量标准》(GB 15618-1995)二级标准(Mn 没有对应的土壤质量标准), Pb、Cr 达到质量标准, Hg、As、Cd、Cu 超标,最大超 标倍数分别为5.44、1.18、1.20、0.63, 超标点位占 比分别 40.5%、2 4%、9.5%、9.5%。

表4 表层沉积物重金属含量

```
Tab. 4 Content of heavy metals in surface sediments
```

							mg/	kg
河流	采样点位置	Нg	As	Pb	\mathbf{Cr}	Cd	M n	Cu
坝河	管庄路	0. 689	7.33	29.8	81	0.45	348	47
坝河	东坝中路	0.327	2.11	26.9	79	0.09	388	25
坝河	芳园南街	0.251	1.91	22.7	59	0.10	309	12
坝河	金榆路	0.978	4. 79	26.0	75	0.16	349	41
北护城河	安定门外大街	0.361	9.18	45.0	87	0.23	523	119
北护城河	新街口北大街	0.507	6.39	66.0	75	0.17	366	35
北小河	望京西路	1.760	5.33	46.1	90	0.50	356	72
北小河	南皋路	0.574	3.43	23.1	66	0.15	273	30
北小河	滨河路	1.810	5.48	34. 1	67	0.36	316	45
丰草河	西三环辅路	0. 524	3.62	37.2	64	0.28	432	39
莲花河	菜户营南路	0.028	4, 17	1.6	16	0.11	4	18
凉水河	南三环辅路	0. 797	1.04	13.5	35	0.11	127	13
凉水河	光彩路	0.445	2.81	20.1	52	0.12	260	23
凉水河	小红门路	0. 159	3.85	28.5	66	0.24	151	48
凉水河	大红门	0.108	0.66	13.8	40	0.06	1	7
亮马河	新源街	0.425	10. 20	39.3	60	0.41	376	70
马草河	樊羊路	0.457	3.03	21.5	61	0.20	400	26
马草河	芳菲路下游	0.203	54.40	60.6	191	1.32	575	50
南护城河	左安门西街	3.220	15.27	118.8	96	1.05	307	163
南护城河	甘口桥	0.082	0.47	1.2	15	0.07	2	6
南长河	厂洼街与半 壁街交叉口	0. 670	6.32	36.5	66	0. 52	306	42

• 76 • 生态与环境

续表4 表层沉积物重金属含量

Tab. 4 Content of heavy metals in surface sediments

						mg/ kg	(ジ	(衣)
河流	采样点位置	Hg	As	Pb	Cr	Cd	Mn	Cu
南长河	高粱桥斜街	1.630	6.27	47.0	79	0.68	294	62
清河	树村路	0.419	3.77	24.7	59	0.25	303	42
清河	毛纺路	0.636	2.17	22. 2	53	0.27	354	24
清河	黑泉路	0.472	1.08	18.4	66	0.09	327	14
清河	安立路	0.282	1.65	16.2	61	0.06	280	9
通惠灌渠	大鲁店北路	0.110	4.39	20.5	42	0.11	379	22
通惠灌渠	王四营北路	0.044	5.73	0.4	11	0.34	22	147
通 惠 河 上段	四惠枢 纽 西 路	0.075	6. 93	64.4	63	0.42	17	152
通 惠 河 下段	双桥路	0.072	2. 20	15.2	37	0.08	67	15
土城沟 🔪	樱花园东街	0.043	8.95	36.7	75	0.30	448	47
温榆河	首都机场辅路	1.440	1.87	13.6	42	0.06	199	6
温榆河	徐尹路	0.098	9.06	21.2	75	0.05	403	24
萧太后河	王村路	0.059	4.60	21.9	57	0.26	22	31
萧太 后河	小武基五金 建材城对面	0. 126	2.70	20. 8	35	0. 17	309	18
萧太后河	双桥西路	0.128	3.58	29.1	56	0.32	212	46
小龙河	大红门南路	2.420	4.92	28.2	104	0.13	359	39
小月河	志新路	0. 291	1.26	16.0	38	0.20	174	39
永定河	侯庄子桥东边	3.040	8.87	5.9	88	0.31	275	57
永定河	莲石湖西路 东边	0.051	3.26	12.5	48	0.01	371	32
永引渠	翠微路	1.070	9.90	46.8	53	0.32	370	44
转河	文慧园西路	1.280	7.50	113.0	77	1.02	285	87
平:	均值	0.670	6.01	31.1	63	0.29	277	45
土壤	背景值	0.08	7.09	24.6	29.8	0. 119	571	18.7
土壤二级	6质量标准	0.50	25	300	300	0.60	1	100

表层沉积物中 Hg、Cr、Cu 和 Cd 的地累积指数空间分布 图 2 Fig. 2 patial distribution of Hg, Cr, Cu, and Cd in surface sediments by Geoaccumulation Index(Igeo)

重金属污染程度及来源分析 2.2

2 2 1 地累积指数

地累积指数法评价结果(表 5)表明沉积物中 Hg、As、Pb、Cr、Cd、Mn、Cu 的平均地累积指数分别为 1. 49、- 1. 41、- 0. 77、0. 34、0. 14、- 2. 30、0. 24, 其大 小排序为Hg> Cr> Cu> Cd> O> Pb> As> Mn, 沉积物主要受到重金属 Hg、Cr、Cu、Cd 的污染。 表 5 河流沉积物重金属地累积指数(I_{geo})

Tab. 5 The Geoaccumulation Index(Igeo) of heavy metals in river sediments

重		I _{geo} 最	Igeo	污染分级百分比(%)							
並属	平均值	小值	最大值	0级	1级	2级	3级	4级	5级	6级	
Нg	1.49	- 2.10	4.75	26.2	9.5	23.8	16.7	16.7	7.1	0	
As	- 1.41	- 4.50	2.35	95.2	2.4	0	2.4	0	0	0	
Pb	- 0.77	- 6.53	1.69	73.8	21.4	4.8	0	0	0	0	
\mathbf{Cr}	0.34	- 2.02	2.10	23.8	66.7	7.1	2.4	0	0	0	
Cd	0.14	- 3.78	2.89	45.2	31.0	16.7	7.1	0	0	0	
Mn	- 2.30	- 9.39	- 0.57	100	0	0	0	0	0	0	
Cu	0.24	- 2.22	2.53	38.1	40.5	11.9	9.5	0	0	0	

沉积物中Hg、Cr、Cu、Cd的污染空间分布见图 2, 中心城区重金属 Hg 污染总体处于 2 级(中等) 污 染程度,73.8%的采样点位均受到了Hg元素的污 染,污染最为严重的河流为南护城河、永定河及小龙 河、达到了5级(强极强)污染程度。Cr、Cu和Cd 污染总体处于1级(轻度-中等)污染程度, Cr 污染 最为严重的为马草河; Cu 污染最为严重的为南护城 河、通惠灌渠、通惠河上段及北护城河;Cd 污染最为 严重的为马草河、南护城河、转河。

顺义区

0~1

1~2 2~3

顺义区

区县边界线

中心城范围

2.2.2 污染来源分析

沉积物中重金属来源可分为自然源和人为源两 大类。北京市河流沉积物重金属可能的来源有:矿 石开采、冶金、燃煤^{18]}、交通、农药化肥^[19]、生活及第 三产业等^[20]。北京中心城基本无矿石开采、冶金等 工业活动及农业生产活动,城区生活污水收集率较 高,因此北京中心城的重金属来源可能主要来源于 交通、燃煤及第三产业等活动、

为探究中心城区沉积物中重金属的污染来源,以 沉积物中42个采样点的重金属含量为变量,采用主 成分分析提取出前3个主成分(特征值:3708+ 1.304+0.882=5894变量),其解释了总方差的 8421%,表明这3个主成分可以完全代表原始数据 的绝大部分信息,为进一步对变量进行解释,采用方差 极大正交旋转法得到各因子变量的载荷分布(图3)。

图 3 表层沉积物重金属的因子载荷图 Fig.3 Factor loading plot of heavy metals in surface sediments

第一主成分的贡献率为 52 97%, 表现在 Cd、 Cu、Pb 元素含量上有较高的正载荷,在As、Cr、Hg 上也有一定的载荷。Cd、Cu 和 Pb 元素相互之间具 有较强的相关性,相关系数大于05(表6),推测这 3种元素来源相似。Cd、Cu、Pb含量最大值出现在 南护城河和马草河,污染较为严重的河流(南护城 河、转河、北护城河、南长河、通惠河等)均平行于二 环等车流量较多的主要交通干线或位于重要交通路 口附近(图4),因此初步推断 Cd、Cu、Pb 来源于机 动车尾气排放等交通源及道路灰尘。研究表明,常 见的来自于交通源的重金属有: Zn、Cd、Cu、Pb等. Cd 主要来源于汽车尾气及轮胎磨损, Cu 来源于柴 油燃烧及刹车片磨损, Pb 来源于含铅汽油燃烧及轮 胎磨损^[21-22]。相关研究也表明,北京道路灰尘中的 Cd、Cu、Pb 污染较为严重[2324],这些道路扬尘及汽 车尾气排放的污染物会随雨水及城市路面清洁形成

地表径流进入到水体中^[25],因此推断第一主成分代 表的是交通源排放。

表 6 表层沉积物中重金属元素之间的皮 尔逊(Pearson)相关系数

T ab. 6 The Pearson correlation coefficients between heavy metals in surface sediments

		-					
	${ m H}{ m g}$	As	Pb	Cr	Cd	Mn	Cu
Нg	1.000						
As	0. 091	1.000					
$\mathbf{P}\mathbf{b}$	0. 398* *	0.417**	1.000				
\mathbf{Cr}	0. 359*	0.787**	0. 529* *	1.000			
$\mathbf{C}\mathbf{d}$	0. 373*	0.742**	0. 768* *	0.651**	1.000		
Mn	0.189	0. 431**	0. 328*	0. 662**	0.274	1.000	
Cu	0. 310*	0.284	0. 599* *	0.233	0. 571**	0.014	1.000
注:*	** 表示 P	< 0.01 显著	著水平(双周	毛). * 表示	P < 0.05	显著水平()	双尾)

图 4 北京中心城主安父通道路的牛流重 Fig. 4 The traffic flow on the main roads in Central District of Beijing

第二主成分的贡献率为 18 63%, 表现在 Cr、 As、Mn 元素含量上有较高的正载荷, 同时在 Cd、Ph 上也有一定载荷。Cr、As、Mn 元素之间有较好的相 关性, 相关系数为 0 431(As Mn)、0 662(Cr Mn) 和 0 787(As Cr)。重金属 Cr、As 含量最大值均出 现在马草河, 这可能与马草河附近分布着以花乡桥 为中心的众多汽修、汽配厂排放的污染物有关。研 究表明 As、Cr 为常见的水环境污染物, 同时存在于 颜料、墨水制造等废水及城市污水中^[26], 汽修时油 漆中含有的颜料、汽车的废弃零部件及润滑油等含 有 Cr、As、Cd、Pb 等重金属^[27], 这些可能随着生活 污水和地面雨水径流进入河道; Mn 元素污染程度 非常小, 可能主要是自然来源, 因此推断第二成分代 表的是汽修废水排放及自然源。

第三主成分的贡献率为 12 60%,表现在 Hg 元素含量上有较高的正载荷。第三成分的特征值小 于 1,贡献率也较小,若只提取 2 个主成分,则第一 主成分在 Cd、Cu、Pb 与 Hg上有较高正载荷,但 Hg

• 78 • 生态与环境

与 Cd、Cu、Pb 之间的相关系数不高, 这说明 Hg 与 Cd、Cu、Pb 可能都来自于大气沉降及雨水径流, 但 具体来源有所不同。北京中心城沉积物的 Hg 污染 比较普遍, Hg 的这种分散性污染特征与大气沉降 污染特性有关^[28]; 研究表明, 燃煤是 Hg 最重要的 排放源, 北京地区 2012年大气中汞的人为排放以燃 煤为主, 占到了总排放量的 65 6%^[29]。大气环境中 的 Hg 通过大气沉降及雨水径流进入河流及其沉积 物中, Chen 等^[30] 也表示流经城区的河流中 Hg 的 浓度高于农村地区, 主要来源于城市径流。Hg 含 量最大值出现在南护城河, 其次永定河、小龙河等处 的污染也较为严重, 可能与这些地方使用小煤炉有 关, 研究表明民用蜂窝煤多为富汞的劣质煤, 排放的 汞含量要远高于工业用煤^[31], 因此推断第三主成分 代表煤炭燃烧排放。

2.3 中心城沉积物中重金属生态风险评价

重金属潜在生态风险系数结果(表 7)表明, Hg、As、Pb、Cr、Cd、Mn、Cu的平均潜在生态风险系 数*Ei*分别为357、9、7、4、80、2、13,其大小排序为 Hg>Cd>Cu>As>Pb>Cr>Mn。重金属Hg的 潜在生态风险最大,总体上具有较强生态危害,其潜 在生态风险系数(*Ei*)对潜在生态风险指数(*RI*)的 贡献率为75.6%;重金属Cd具有轻度生态危害,其 潜在生态风险指数的贡献率为169%。

中心城区河道潜在生态风险指数(RI)最大值为1275,最小值为54,平均值为472,总体上具有较强生态危害。21条河流中,33.3%的河流具有很强的生态危害,28.6%具有较强的生态危害,14.3%具有中等生态危害,23.8%具有轻度生态危害。具有很强生态危害的河流为小龙河、南护城河、转河、永定河、北小河、南长河及永定河引水渠7条河流。

3 结论与建议

(1)北京中心城河流表层沉积物主要受到Hg、 Cr、Cd、Cu的污染,其中Hg污染处于2级(中等)污 染程度,Cr、Cd和Cu处于1级(轻度-中等)污染程 度,总体上污染较严重的河流主要为南护城河、小龙 河、转河等。重金属污染来源主要有三个途径:一是 机动车尾气排放及道路灰尘,二是汽修、汽配厂排 放,三是供暖燃煤排放;这些污染源排放的重金属通 过雨水径流的方式逐渐累积于河流沉积物中。

(2)北京中心城河流表层沉积物总体上具有较强生态危害,其中Hg的生态危害最大,其对潜在生态风险指数的贡献率为75.6%,对中心城的水生态

表 7 表层沉积物潜在生态风险指数及风险等级

Tab. 7 Potential ecological risk index and risk

河滨女称	样口	1	重金属	属潜在	生态	风险系	数E	i	рі	生态
何 孤石 你	四数	Hg	As	Pb	Cr	Cd	Mn	Cu	- ni	<u>风险</u> 等级
坝河	4	281	6	5	5	50	2	8	358	较强
北护城河	2	217	11	11	5	50	3	21	319	较强
北小河	3	691	7	7	5	85	2	13	810	很强
丰草河	1	262	5	8	4	71	3	10	363	较强
莲花河	1	14	6	0	1	28	0	5	54	轻度
凉水河	4	189	3	4	3	33	1	6	239	中等
亮马河	1	213	14	8	4	103	3	19	364	较强
马草河	2	165	41	8	8	192	3	10	427	较强
南护城河	2	826	11	12	4	141	1	23	1017	很强
南长河	2	575	9	8	5	151	2	14	764	很强
清河	4	226	3	4	4	42	2	6	288	中等
通惠灌渠	2	39	7	2	2	57	1	23	130	轻度
通惠河	2	37	6	8	3	63	0	22	140	轻度
土城沟	1	22	13	7	5	76	3	13	138	轻度
温榆河	2	385	8	4	4	14	2	4	420	较强
萧太后河	3	52	5	5	3	63	1	8	138	轻度
小龙河	1	1210	7	6	7	33	3	10	1275	很强
小月河	1	146	2	3	3	50	1	10	215	中等
永定河	2	773	9	2	5	41	2	12	843	很强
永定河 引水渠	1	535	14	10	4	81	3	12	657	很强
转河	1	640	11	23	5	257	2	23	961	很强
平均值		357	9	7	4	80	2	13	472	较强

造成了严重威胁, 需引起足够的重视; 中心城具有很 强生态危害的河流主要为小龙河、南护城河、转河、 永定河等。

(3) 建议基于本研究沉积物重金属污染来源分析的结果,采取相应措施控制控制 Hg 等重金属的 地表径流输入,并采取原位或异位生态修复技术对 已污染的沉积物进行治理。

参考文献(References):

- [1] PENG J F, SONG Y H, YUAN P, et al. The remediation of heavy metals contaminated sediment [J]. Journal of Hazardous Materials, 2009, 161: 633-640.
- [2] 严长姿、崔小丽、王建、等. 扬州 市城区地表水底泥重金属污染现状与风险评价[J]. 环境污染 与防治, 2009, 31(8): 50 54.
 (YAN C A, CUI X L, WANG J, et al. Assessment on heavy metal pollution in bottom sediments of surface waters in Yangzhou [J]. Environmental Pollution & Control, 2009, 31(8): 50 54. (in Chinese))
- [3] 魏俊峰,吴大清,彭金莲,等.污染沉积物中重金属的释放及其

生态与环境 • 79 •

动力学[J]. 生态环境, 2003, 12(2): 127 130. (WEI J F, WU D Q, PENG J L, et al. Release and kinetics of heavy metals from the contaminated sediments [J]. Ecology and Environment, 2003, 12(2): 127-130. (in Chinese))

- [4] CHABUKDHARSM, NEMA A K. Assessment of heavy metal contamination in Hindon River sediments: A chemometric and geochemical approach [J]. Chemosphere, 2012, 87: 945-953.
- [5] HUANG L L, PU X M, PAN J F, et al. Heavy metal pollution status in surface sediments of Swan Lake lagoon and Rongcheng Bay in the northern Yellow Sea [J]. Chemosphere, 2013, 93: 1957-1964.
- [6] YIN S, WU Y H, XU W, et al. Contribution of the upper river, the estuarine region, and the adjacent sea to the heavy metal pollution in the Yangtze Estuary [J]. Chemosphere, 2016, 155: 564-572.
- [7] MAXL, ZUO H, TIAN M J, et al. Assessment of heavy metals contamination in sediments from three adjacent regions of the Yellow River using metal chemical fractions and multivariate analysis techniques [J]. Chemosphere, 2016, 144: 264 272.
- [8] YAN N, LIU W B, XIE H T, et al. Distribution and assessment of heavy metals in the surface sediment of Yellow River, China [J]. Journal of Environmental Science, 2016, 39: 45-51.
- [9] 张伯镇,雷沛,潘延安,等.重庆主城区次级河流表层沉积物重 金属污染特征及风险评价[J].环境科学学报,2015,35(7): 2185-2192.(ZHANG B Z, LEI P, PAN Y A, et al. Pollution and ecological risk assessment of heavy metals in the surface sediments from the tributaries in the main urban districts, Chongqing City [J]. Acta Science Circumstantiae, 2015, 35 (7):2185-2192.(in Chinese))
- [10] 吴光红,朱兆洲,刘二保,等. 天津城市排污河道沉积物中重金 属含量及分布特征[J].环境科学,2008,29(2):413420.(WU G H,ZHU Z Z,LIU E B, et al. Concentrations and distribur tion of heavy metals in urban sewage discharge channel of Tianjin [J]. Environmental Science, 2008, 29(2):413420. (in Chinese))
- [11] 杨毅,赵月芬,石维新,等.北京市中心城河道现状及治理对策措施[J].北京水务,2013(4):3537.(YANGY,ZHAOYF, SHIWX, et al. Status and management measures of the river channel in Central District, Beijing [J]. Beijing Water, 2013 (4):3537.(in Chinese))
- [12] MULLER G. Index of geoaccumulation in sediments of the Rhine River [J]. Geo Journal, 1969, 2(3): 108-118.
- [13] 陈同斌,郑袁明,陈煌,等.北京市土壤重金属含量背景值的系统研究[J].环境科学,2004,25(1):117122.(CHEN T B, ZHENG Y M, CHEN H, et al. Background concentrations of soil heavy metals in Beijing [J]. Environm ental Science, 2004, 25(1):117-122.(in Chinese))
- [14] 高彦鑫.北京密云水库上游金属矿区土壤中重金属污染及风险评价[D].北京:首都师范大学,2012,13.(GAOYX.Pollur tion and risk assessment of heavy metals in soils of iron and gold mine areas of Miyun Reservoir upstream in Beijing [J] Beijing: Capital Normal University, 2012, 13.(in Chinese))
- [15] 李健,郑春江.环境背景值数据手册[M].北京:中国环境科学

出版社, 1988, 55. (LI J, ZHENG C J. Data manual of envirormental background value [M]. Beijing: China Environmental Science Press, 1988, 55. (in Chinese))

- [16] FORSTNER U. Lecture notes in earth sciences (contaminar ted sediments) [M]. Berlin: Springer Verlag, 1989, 107 109.
- [17] HAKANSON L. An ecological risk index for aquatic pollution control: A sedimentological approach [J]. Water Research, 1980, 14(8): 975 1001.
- [18] 姚晓飞,周岩梅,于晓华,等.南沙河表层沉积物重金属污染评价及来源解析[J].环境科学与技术,2011,34(12):197200. (YAOXF,ZHOUYM,YUXH,et al. Pollution evaluation and source identification of heavy metals in surface sediments of Nansha River [J]. Environmental Science & Technology, 2011,34(12):197200.(in Chinese))
- [19] 李祥玉,季宏兵,朱先芳,等.北京北部水源地沉积物中重金属 元素分布及形态研究[J].现代农业科技,2010,(9):273-277.
 (LIXY, JIH B, ZHUXF, et al. Analysis on distribution and partition of heavy metal in sediments of Northern Beijing war ter source [J]. Modern Agricultural Science and Technology, 2010,(9):273-277.(in Chinese))
- [20] 朱先芳,唐磊,季宏兵,等.北京北部水系沉积物中重金属的研究[J].环境科学学报,2010,30(12):2553-2562.(ZHU X F, TANG L, JI H B, et al. Analysis of heavy metals in sediments of the water system in the north of Beijing [J]. Acta Scientiae Curcum stantiae, 2010, 30(12): 2553-2562.(in Chinese))
- [21] ArKHASHMAN O A. Heavy metal distribution in dust, street dust and soils from the work place in Karak Industrial Estate, Jordan [J]. Atmosphere Environment, 2004, 38(39): 6803-6812.
- [22] 王鹏.北京某公路两侧土壤重金属污染现状及风险评价研究
 [D].北京:北京建筑大学. 2014, 6. (WANG P. Investigation and risk assessment of heavy metals pollution in soil on both side of some roads in Beijing [D]. Beijing: Beijing University of Civil Engineering and Architecture, 2014, 6. (in Chinese))
- [23] 晏星,罗娜娜,赵文吉,等.北京城区交通边缘带土壤重金属污染研究[J].环境科学与技术,2013,36(12):175180.(YAN X,LUONN,ZHAOWJ,et al. Heavy metal pollution evaluration and spatial influence range analysis for main roads with in the fifth ring road of Beijing urban [J]. Fnvironmental Scrence & Technology, 2013, 36(12):175180.(in Chinese))
- [24] 唐荣莉,马克明,张育新,等.北京城市道路灰尘重金属污染的 健康风险评价[J].环境科学学技,2012,32(8):2006 2015.
 (TANG R L, MA K M, ZHANG Y X, et al. Health risk assessment of heavy metals of street dust in Beijing [J]. Acta Scientiae Circumstantiae, 2012, 32(8): 2006 2015. (in Chinese))
- [25] PRATT C, LOTTERMOSER B G. Mobilisation of traffic de rived trace metals from road corridors into coastal stream and estuarine sediments, Cairns, northern Australia [J]. Envirormental Geology, 2007, 52 (3): 437-448.
- [26] JHA A K, BOSE A, DOWNEY J P. Removal of As(V) and Cr(VI) Ions from aqueous solution using a continuous, hybrid field gradient magnetic separation device [J]. Separation Science and Technology, 2006, 41: 3297-3312.

(下转第107页)

• 80 • 生态与环境

[J]. Canadian Journal of Fisheries and Aquatic Sciences. 1988, 45(3): 492-501. DOI: 10. 1139/ f88-059.

- [10] ZHANG G P. Time series forecasting using a hybrid ARIMA and neural network model[J]. Neurocomputing. 2003 (50): 159-175. DOI: 10. 1016/S0925 2312(01) 00702 0.
- [11] JAIN A, Kumar A M. Hybrid neural network models for hydrologic time series forecasting [J] Applied Soft Computing, 2007, 7 (2): 585-592. DOI: 10-1016/j. asoc. 2006. 03. 002.
- [12] 邓聚龙. 灰色系统理论简介[J]. 內蒙古电力. 1993(3):51-52.
 (DENG J L. Introduction to the grey system theory[J]. Inner Mongolia Electric Power, 1993(3):51-52. (in chinese))
- [13] 刘思峰. 灰色系统理论的产生与发展[J]. 南京航空航天大学 学报, 2004 (2): 267 272. (LIU S F. Emergence and development of grey system theory and its forward trends[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2004 (2): 267-272. (in Chinese)) DOI: 10. 3969/j. issn. 1005 2615. 2004. 02. 027.
- [14] LIU S, FORREST J, YANG Y. A brief introduction to grey systems theory [J]. Grey Systems: Theory and Application, 2012, 2(2): 89 104. DOI: 10.1109/GSIS. 2011. 6044018.
- [15] BAI C, SARKIS J. Integrating sustainability into supplier selection with grey system and rough set methodologies[J]. International Journal of Production Economics, 2010, 124(1): 252-264. DOI: 10. 1016 / j. ij pe. 2009. 11. 023.

[16] LOUY X, ZHUANG L T, CAI A H, et al. Grey GM (1, 1) model with function transfer method and application to energy consuming prediction [J]. Kybernetes, 2004, 33(2): 322 330.

- [17] TRIVEDI H V, SINGH J K. Application of grey system theory in the development of a runoff prediction model[J]. Biosystems Engineering, 2005, 92(4): 521-526. DOI: 10.1016/j. biosystem seng. 2005. 09. 005.
- [18] 刘思峰,谢乃明. 灰色系统理论及其应用[M]. 第6版. 北京: 科学出版社, 2013: 217. (LIU S F, XIE N M. Grey system theory and its application[M]. Beijing : Science Press, 2013: 217. (in Chinese))
- [19] 刘思峰, 蔡华,杨英杰, 等. 灰色关联分析模型研究进展[J]. 系统工程理论与实践, 2013(8): 2041-2046. (LIU S F, CAI H, YANG Y J, et al. Advance in grey incidence analysis modelling[J]. Systems Engineering Theory & Practice, 2013(8): 2041-2046. (in Chinese)) DOI: 10. 3969/j. issn. 1000 6788. 2013. 08. 018.
- [20] 易德生,郭萍.灰色理论与方法[M].北京:石油工业出版社, 1992.(YIDS,GUOP.Crey theory and method[M].Beijing: Oil Industry Press, 1992..(in Chinese))
- [21] 邓聚龙. 灰预测与灰决策[M]. 武汉: 华中理工大学, 2002. (DENG JL. Crey forecasting and decision[M]. Wuhan: Huar zhong University of Science and Technology Press, 2002. (in Chinese))

(上接第80页)

- [27] 苏毅,杨延梅,岳波,等.典型废矿物油的产生工艺及其重金属 浓度特征[J].环境工程技术学报,2015,5(2):106113.(SU Y,YANGY M,YUE B, et al. Study on generation processes of used mineral oil and their heavy metal concentration characteristics [J]. Journal of Environmental Engineering Technology, 2015, 5(2):106113.(in Chinese))
- [28] 李霞, 张慧鸣, 徐霞, 等. 农田 Cd 和 Hg 污染的来源解析与风险 评价研究[J]. 农业环境科学学报, 2016, 35(7): 1314 1320. (LI X, ZHANG H M, XU X, et al. Source apportionment and risk as sessment of Cd and Hg pollution in farmland [J]. Journal of Agro Environment Science, 2016, 35(7): 1314 1320. (in Chinese))
- [29] 董灿. 我国人为源大气汞排放清单的分析研究[D]. 西安: 西 安建筑科技大学. 2015, 26 27. (DONG C. Anthropogenic at-

mospheric mercury emissions inventory and analysis in China [D]. Xi an: Xi an University of Architecture and Technology. 2015, 26-27. (in Chinese))

- [30] CHEN M, ZHENG Z H, FU D F, et al. Characteristics of Hg pollution in urban stormwater runoff in Nanjing city, China
 [J]. Journal of Southeast University (English E dition), 2014, 30(2): 158 163.
- II [31] 李珊,李洋,梁汉东,等.北京城郊燃煤汞排放及其对当地空气 环境的影响[J].环境科学研究,2014,27(12):14201425.(LI S,LI Y, LIANG H D, et al. Atmospheric mercury emissions from domestic coal and impacts on local environment of Sub urban Beijing [J]. Research of Environmental Sciences, 2014, 27(12):14201425.(in Chinese))