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Flood probabilistic forecasting

based on quantile regression method

HU Yiming, LUO Xuyi, LIANG Zhongmin, HUANG Yixin, JIANG Xiaolei

(College of Hydrology and Water Resources, Hohai Uuniversity, Nanjing 210098, China)

Abstract: The quantile regression model is used to analyze the uncertainty of flood forecasting. The results of preferred value

(median of predicted probability distribution function) and 90% confidence interval of flood forecasting are provided to realize

the forecast of flood probability. The performance of probabilistic forecasting obtained by the quantile regression model is evalu-

ated using "accuracy-reliability" joint evaluation index. The application results of Meigang station in the Xinjiang River basin

show that in term of prediction preferred value, the quantile regression model can further improve the accuracy of the flood fore-

casting. Simultaneously, the prediction interval results with 90% confidence level provided by the model have higher coverage

(about 90%) and less dispersion (less than 0. 20) , which means that the narrow prediction interval contains most of the obser-

vation,and the reliability of the forecast interval is strong.

Key words: flood probabilistic forecasting; quantile regression model; prediction preferred value; prediction interval; accuracy-reli-

ability assessment

Due to the complexity of natural process and
the limitation of human understanding, the use of
hydrological models for flood forecasting will inevi-
tably have many uncertainties, which will lead to
the uncertain results"®, In order to describe the
uncertainty of flood forecasting, many uncertainty
analysis methods of flood forecasting or probabilis-
tic forecasting methods have been proposed succes-
sively. However, no matter which method is used,
it is generally realized on the basis of analyzing the
uncertainty of forecasting. In other words, by cou-
pling the deterministic hydrological model with the
uncertainty analysis method, the probability distri-

bution of flood elements at any time in the future is

Received: 2020-05-25 Revised: 2020-06-18

obtained to realize the probabilistic forecasting of
flood process.

The current flood probabilistic forecasting
methods can be generally divided into two types.
One is the total-factor coupling approach, and the
other is the total forecasting error analysis ap-
proacht™. In the total-factor coupling approach, the
uncertainties of each link or major factor in the
rainfall-runoff process,such as rainfall input uncer-

[5-6] [7-8] , and

tainty"”®, model parameter uncertainty

model structure uncertainty-*'"

,are quantified re-
spectively. Then, these uncertainties are coupled to
realize probabilistic forecasting"'"!. In the total

forecasting error analysis approach, the uncertain-
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ties of input, model structure, and parameters are
not directly dealt with. Instead, the comprehensive
error is dealt with. Specifically, the total error be-
tween the forecasting results and the actual flood
process is analyzed from the deterministic forecas-
ting results. The mathematical statistics method is
used to construct the mathematical description
equation of the output of the deterministic model
and the actual flood process to directly quantify the
comprehensive uncertainty of flood forecasting. On
this basis, the forecast distribution function of the
forecast quantity in the condition of the determinis-
tic forecast value is deduced to realize the probabi-
listic forecasting. The representative methods in-
clude the hydrologic uncertainty processor of

[15-18]

Bayesian forecasting system , the model condi-

[19-21]

tional processor , the three-dimensional error

matrix 2
model™,

Quantile regression model belongs to the total

,and the error heterogeneous distribution

forecasting error analysis method. Through direct
analysis of the difference between the forecasting
results and the actual flood process, the flood prob-
abilistic forecasting is carried out. It provides not
only the prediction preferred value (median Q50)
of the forecast quantity but also the prediction in-
terval at a certain confidence level. In this paper,
based on the existing results of real-time flood
forecasting scheme of Meigang hydrological station
in the Xinjiang River basin, the quantile regression
model is used to study the real-time flood probabi-

listic forecasting method.
1 Method principle

1.1 Quantile regression model

The quantile regression model is an extension
of the least squares algorithm based on the classi-
cal conditional mean. Quantile regression can esti-
mate the linear relationship between a set of re-
gression variables and explained variables. Regres-
sion of explanatory variables according to various
conditional quantiles of explained variables can
more accurately describe the influence of explana-
tory variables on the conditional distribution shape

and variation range of explained variables, and the

analysis and characterization of features will be
more comprehensive. The regression equation at
any quantile level (such as 5% and 95% quan-
tiles) can be obtained using the quantile regres-
sion model, and then the flood probabilistic fore-
casting results at a specified confidence level can
be calculated, such as the prediction preferred val-
ue (median) or the prediction interval results at
90% confidence level. Furthermore, the uncertainty
of flood forecasting is quantified, and more abun-
dant forecasting information can be provided at the
same time 2?4,

In order to describe the basic theory of the
quantile regression model, variables X,S,and Y are
used to represent the flow to be predicted, the fore-
cast flow of the deterministic model,and the early-
stage observed flow series respectively. The quan-
tile multiple regression equation can be expressed
as follows

X =, (TR (@DSHL (DY +e(r) (D
where z'is the selected quantile (0<{z<C1), which
determines the regression level of dependent varia-
ble. In other words,under the given conditions of S
and Y, the conditional quantile of the variable to be
predicted corresponding to the ¢ quantile level is X
(7). A higher 7 leads to a higher regression level. g,
(), (i=0,1,2) is the equation coefficient at the
regression level 7, which can be estimated by the
weighted least-absolute criterion

QB (D) s (D)3, ()=
min{ 2 | X (| D) =B () —

X, =B, (DB (DS+p, (DY

ﬁl (T)Silgz(f)Y| +
(1—2) | X (| O —B, () —

X, <, (03 (DS, (@Y
B (DS—R (Y]} (2
where t=1,2,3,+++,n,which is the number of sam-
ples of the observed series.

The regression equation at any quantile level
(such as 5% and 95% quantiles) can be obtained
using the above equation,and then the probabilistic
forecasting results at a specified confidence level
can be calculated, such as the median (50%) fore-
cast value or the prediction interval results at 90%
confidence level, thus providing more abundant

forecasting information.
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1.2 Evaluation index of probabilistic fore-
casting

The probabilistic forecasting model offers not
only deterministic forecasting results similar to
those of the deterministic model (a quantile of the
distribution function,such as the expected value or
median) but also the prediction interval results
with a certain confidence level (such as 90%) for
uncertainty analysis. According to the deterministic
forecasting results of the expected value or median
provided by the probabilistic forecasting model, the
certainty coefficient and the flood peak error are
used to evaluate the forecast accuracy of each mod-
el. According to the prediction interval results pro-
vided by the probabilistic forecasting model, the
coverage rate and dispersion are used to evaluate
the reliability of each model®’. The calculation
equation of each index is as follows.

(1) The relative error of flood peak is used to
describe the deviation of the forecasted flood peak
from the observed flood peak. The value closer to 0
indicates the higher forecast accuracy. The calcula-
tion equation is as follows

M:%xmo% (3)

where Q, and Q; are respectively the observed and
forecasted flood peaks (m®/s).

(2) The certainty coefficient is used to de-
scribe the degree of coincidence between the fore-
cast series and the observed series. The value clos-
er to 1 indicates the higher forecast accuracy. The

calculation equation is as follows

Q. — Q)
NSE=1-S— —"° 4
_;(Qo.iiQo)z

where Q,; and Qy; are respectively the observed
flow and the forecast flow at time i (m®/s);Q, is
the mean value of the observed flow series (m®/s);
N is the total number of periods in the series.

(3) The coverage rate is the percentage of the
observed flow data covered by the prediction inter-

val. The calculation equation is as follows

N
2k, 1,¢'<<o0.<g"
CR=T = Do (5)
N 10,0,<q§‘ or 0,>q"
-8+  Kx K%K R

where ¢! and ¢! are respectively the upper and low-
er limits of the confidence interval (such as 90%)
at time 7 (m*/s); o0, is the observed flow at time
i (m*®/s); N is the total number of periods in the
series.

(4) The dispersion is the ratio of the width of
the prediction interval to the measured value. The
calculation equation is as follows

1 dg'—q!

At a certain specified confidence level, when
the dispersion is lower, the confidence interval is
narrower and the possible variation range of the
flood forecasting results is narrower. These signal
higher stability of the forecasting results, smaller
uncertainty, and more practical forecasting re-
sults. However, a narrower confidence interval
may lead to a lower coverage rate, indicating that
the confidence interval cannot cover most of the
actual observed values or is far from the measured
values,and the error may be large. Therefore, the
coverage rate and dispersion generally show
reverse trends. From the perspective of flood fore-
casting.,it is hoped that the dispersion is as low as
possible on the premise of ensuring a high coverage
rate. Conversely,it is hoped that the coverage rate
will be as high as possible in the case of high dis-

persion.
2 Application examples

The data of ten floods from 2012 to 2019 at
Meigang Station, the main control station of the
Xinjiang River basin, is used to calibrate and ver-
ify the quantile regression model. The eight
floods from 2012 to 2017 are used for the cali-
bration of the quantile regression model, and the
two floods in 2019 are used for model verifica-
tion. The simulated forecast value corresponding
to the floods is calculated through the Xin'an River
model.

In analysis of the observed flood process,it is
found that the flow X, at time ¢ has a strong corre-
lation with the flow X, ; at time (z—1) (the cor-
relation coefficient is 0. 96). Therefore, a quantile

multiple regression analysis model is constructed
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by selecting the model forecast value S, at the
forecast time ¢ and the observed flow X, ; at the
previous time as the independent variables and the
flow X, at the time ¢ as the dependent variable.
The conditional distribution of the "measured val-
ue" of the flow X, at time ¢ under the given condi-
tions of the model forecast value S, at time ¢ and
the observed flow X,—, at the previous time (r—1)
is deduced, and the forecast values corresponding to
the probabilities of 0. 05,0. 50, and 0. 95 are calcu-
lated, so as to realize the flood probabilistic fore-
casting.

Tab. 1 shows the analysis results of eight
floods in the calibration period and makes a com-
parative analysis with the forecasting results of the
original model. In the table, Q50 represents the
prediction preferred value (median forecast) re-
sults provided by the quantile regression model,
and the lower and upper limits of the prediction in-
terval with 90% confidence level are the 5% and
95% quantile forecast values provided by the quan-
tile regression model, respectively. According to
the deterministic forecasting results of the predic-
tion preferred value (Q50) provided by the quan-
tile regression model, the certainty coefficient and
the flood peak error are used to evaluate the fore-
cast accuracy. According to the prediction interval
results with 90% confidence level provided by the

quantile regression model, the coverage rate and

dispersion are used to evaluate the reliability. From
the results of the prediction preferred value provid-
ed by the quantile regression model, the certainty
coefficient values of the eight floods in the calibra-
tion period are all higher than those of the original
deterministic forecast. The mean value of the cer-
tainty coefficients of the eight floods is 0. 99, while
that of the original deterministic forecast is 0. 92.
The relative error of flood peak forecast of the
eight floods calculated based on Q50 forecasting re-
sults is far less than that of original deterministic
forecast. The average absolute value of relative er-
rors of the eight flood peaks is 0.44% , while the
average absolute value of relative errors of flood
peak of the original deterministic forecast is
6. 23%. The results show that the quantile regres-
sion model not only quantifies the uncertainty of
forecasting, but also improves the accuracy of de-
terministic forecast. From the prediction interval at
90% confidence level, the interval coverage rate of
the eight floods ranges from 80% to 96 % ,with an
average of 90%. The interval dispersion is between
0.13 and 0. 14,and the mean value is 0. 14. The re-
sults show that the prediction interval with 90%
confidence level provided by the quantile regression
model has a low dispersion (less than 0. 20) under
the condition of high coverage rate (up to 90%),
indicating that the prediction interval is narrow and

the reliability is strong.

Tab. 1 Forecast evaluation results based on quantile regression model (calibration period)

Certainty coefficient

Relative error of flood peak/%s

Coverage rate of prediction Dispersion of prediction

Flood No. interval with 90% interval with 90%
Original forecast Q50 Original forecast Q50 confidence level/ % confidence level
20120610 0. 90 0.99 4. 90 —0. 60 96 0.13
20130630 0. 95 0. 99 —5.20 —0. 30 91 0.14
20140624 0. 97 0.99 —3.40 —0. 50 92 0. 14
20150608 0.91 0.99 —7.30 —0. 30 89 0.14
20150619 0. 97 0.99 —0. 80 —0. 50 87 0.13
20160507 0. 88 0.99 —7.90 —0. 30 92 0.13
20160604 0. 84 0.99 —10. 60 —0. 30 93 0.13
20170626 0.91 0.99 9. 80 —0.70 80 0. 15
Mean value 0.92 0.99 6.23 0. 44 90 0. 14

Tab. 2 shows the analysis results of the two
floods in the verification period, and makes a

comparative analysis with the original forecasting

results. According to the prediction preferred
value (Q50) results provided by the quantile re-

gression model, the mean value of the certainty
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coefficient of the two floods in the verification
period is 0. 99, which is higher than that of the
original deterministic forecast (0. 91). The av-
erage absolute value of relative errors of flood
peak forecast of the two floods is 0. 45 % , which
is far less than the average absolute value of rela-
tive errors of flood peak of the original determin-
istic forecast (7.15%). The results show that
the prediction preferred value ( Q50) provided

by the quantile regression model has high accura-
cy. From the prediction interval with 90 % confi-
dence, the average interval coverage rate of the
two floods is 92 % , and the average interval dis-
persion is 0. 14. The results also show that the
prediction interval with 90% confidence level
provided by the quantile regression model en-
sures a high coverage rate under the condition of

small dispersion.

Tab. 2 Forecast evaluation results based on quantile regression model (validation period)

Certainty coefficient

Relative error of flood peak/%

Coverage rate of prediction Dispersion of prediction

Flood No. interval with 90%§ interval with 90%
Original forecast 50 Original forecast Q50 confidence level confidence level
20190608 0. 94 0. 98 10. 80 —0. 60 91 0. 14
20190710 0. 87 0. 99 3. 50 —0. 30 92 0. 14
Mean value 0. 91 0. 99 7.15 0. 45 92 0.14

Fig. 1 and Fig. 2 take the forecast effect of
No. 20120610 flood in the calibration period as
examples to visually show the application effect of
the quantile regression model. Fig. 1 shows the
observed series of No. 20120610 flood in the cali-
bration period and the prediction interval results
with 90% confidence level provided by the quan-
tile regression model (the abscissa 1 represents
the starting time of 22; 00 on May 9,2012). It
can be seen from the figure that the observed se-
ries are basically within the upper and lower limits
of the prediction interval with 90% confidence
level. In particular, the prediction interval covers
the flood peak well and has a narrow interval
width,

Fig. 2 shows the results of the No. 20120610
observed flood series, the original model forecast
series,and the prediction preferred value (Q50) se-
ries provided by the quantile regression model. It
can be seen from the figure that compared with the
forecasting results of the original model, the pre-
diction preferred value results provided by the
quantile regression model are closer to the actual
observed series. This shows that the quantile re-
gression model cannot only quantify the uncertain-
ty of forecasting, but also correct the model fore-
cast, so as to provide more accurate deterministic

forecasting results.

+ 10« KxKER

3 Conclusions

Based on the quantile regression model, the
flood

Meigang Station is studied, which not only quanti-

real-time probabilistic  forecasting  of
fies the uncertainty of forecasting, but also pro-
vides the flood probabilistic forecasting results. In
addition, the indexes of certainty coefficient and
relative error of flood peak and the indexes of in-
terval dispersion and coverage rate are used to
evaluate the accuracy and reliability of the quantile
regression model.

(1) The prediction preferred value (Q50) pro-
vided by the quantile regression model is used as
the deterministic forecast. The evaluation results
based on the relative error of flood peak and the
certainty coefficient show that the quantile regres-
sion model can further improve the accuracy of
flood deterministic forecasting.

(2) According to the prediction interval re-
sults at 90% confidence level provided by the
quantile regression model, the observed series are
basically within the prediction interval, and the in-
terval width is relatively narrow. The results show
that the prediction interval obtained based on the
quantile regression model has a high coverage rate
and a low dispersion, and the prediction interval

has a strong reliability.
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