第20卷第4期 2022年8月

DOI:10.13476/j.cnki.nsbdqk.2022.0082

栾清华,何帅,何立新,等. 冬小麦全生育期区域蒸散量时空变化[J]. 南水北调与水利科技(中英文),2022,20(4):814-824. LUAN Q H, HE S, HE L X, et al. Temporal-spatial analysis on evapotranspiration of winter wheat in whole growth stage[J]. South-to-North Water Transfers and Water Science & Technology,2022,20(4):814-824. (in Chinese)

冬小麦全生育期区域蒸散量时空变化

栾清华1,2,何帅2,何立新2,周炜2,王利书2,马静2

(1.河海大学农业科学与工程学院,南京 210098;2.河北工程大学河北省智慧水利重点实验室,河北 邯郸 056038)

摘要:为探究冬小麦不同生育期内区域蒸散发的变化规律,以邯郸永年冬小麦种植区为研究区,基于 Penman-Monteith 公式计算结果验证后的 SEBAL(surface energy balance algorithm for land)模型,模拟计算 2019 年 10 月至 2020 年 6 月全生育期冬小麦不同生长期的区域蒸散量,结果表明:整个冬小麦生育期内区域日最大蒸散发量为 0.97~13.66 mm/d,均值为 0.52~8.06 mm/d;空间分布总体上呈现出西低东高的变化趋势,与研究区地形和水文 地质特征造成的耕作方式的差异性较为一致;时间分布呈现出苗期至返青期在 0.52~1.49 mm/d 波动变化、起身 期至孕穗期在 3.18~4.47 mm/d 波动变化、拔节期至成熟期呈现快速增加到 4.47~8.06 mm/d 的趋势,且与 LAI (leaf area index)变化密切相关;区域蒸散发的峰值在出苗期和返青期之间存在空间转移现象。研究成果对优化区域农田灌溉制度、提高农田水分管理具有借鉴意义。

关键词:蒸散发;SEBAL模型;Penman-Monteith公式;遥感反演;时空特征

中图分类号:TV211;S271 文献标志码:A 开放科学(资源服务)标志码(OSID):

蒸散发(evapotranspiration,ET)是流域水文循 环和水量平衡的主要环节,作为区域能量平衡的重 要组成部分,它反映了在大气、土壤和植被变化的条 件下水和能量通量之间的相互作用^[1-3]。准确的蒸 散发估算对于模拟水文通量和水资源精细化管理十 分重要。ET的时空信息不仅可以量化蒸发造成的 水分流失,还可以反映土地利用、水资源分配和利用 之间的关系信息,同时也是农业水土资源平衡计算、 灌溉工程规划设计与运行管理中不可缺少的基础数 据。随着水资源供需矛盾的日益突出和现代灌溉农 业用水管理的精细化要求,分析不同时空尺度 ET 变化规律成为农田水利研究的必要内容。

在上述背景下,遥感技术因其在对区域尺度作物监测的高效性和获取数据的相对可靠性而逐渐进入蒸散发研究领域^[4]。早在1973年,Brown等^[5]利用热红外光谱影像,结合微气象和蒸渗仪测定数据,

开展农田蒸散发计算[6],从此采用遥感数据计算蒸 散发的研究迅速发展,并经过众多学者的不断改善, 构建了各种类型蒸散发模型,如经验半经验模型、植 被指数模型、能量平衡模型等,实现了区域蒸散发研 究质的飞跃[7]。其中,以能量平衡方程计算的模型 发展最为成熟^[8],此模型可分为单层模型和双层模 型[9]。单层模型(又称"大叶模型"),即不区分植被 蒸腾和土壤蒸发[10],将土壤和植被视为一个均一的 整体来考虑潜热通量,常见的单层模型包括 SEBAL (surface energy balance algorithm for land)模型^[11] 和 SEBS(surface energy balance system)模型^[12] 等。与单层模型不同,双层模型分别计算土壤和冠 层^[10]两个组分的净辐射、显热和潜热,进而能够区 分土壤蒸发和植被蒸腾, Norman 等^[13]开发的 TSEB(two-source energy balance)模型是双层模型 的代表。也有一些学者综合考虑上述两种模式,在

收稿日期:2021-11-19 修回日期:2022-03-11 网络出版时间:2022-03-22

网络出版地址:https://kns.cnki.net/kcms/detail/13.1430.TV.20220321.1430.002.html

基金项目:国家自然科学基金面上项目(51879066);河北省自然科学基金面上项目(E2019402468)

作者简介:栾清华(1978—),女,河北井陉人,教授,博士,主要从事水文学及水资源研究。E-mail; carol97011202@163. com

通信作者:何立新(1966—),男,宁夏石嘴山人,教授,博士,主要从事水文水资源、水环境生态及农业水利研究。E-mail:helixin@hebeu.edu.en

前人研究的基础上提出了混合双源蒸散发 HTEM (hybird dual-source scheme and trapezoid framework based evapotranspiration)模型^[14-17]。相比之 下,单层模型理论简单,并且有稳定的物理理论做支 撑,不需要过多的经验参数,能取得较好的反演 精度。

其中,又以 SEBAL 模型应用较为广泛,许多研 究者在不同地区应用该模型开展蒸散发的分析研 究。比如:有些学者[18-21] 以流域或平原为研究对象, 使用 SEBAL 模型对其进行遥感蒸散研究, 计算获 得日蒸散量;还有以高原地区为研究对象开展基于 SEBAL 模型蒸散估算^[22-23],结果较好地模拟出了区 域的蒸散量;在干旱半干旱区,王强等^[24]利用 SE-BAL 模型反演得到冀蒙接壤区内的日蒸散规律:还 有学者^[25-26]以不同灌区为研究对象,使用 SEBAL 模型和不同遥感数据对区域农田蒸散发进行估算。 在更大尺度的区域研究方面:Cheng 等[27] 以中国为 研究对象利用多源图像运用 SEBAL 在中国进行长 时间序列日蒸散发计算,表明 SEBAL 在不同植被 类型、不同气候条件、不同地形以及不同季节条件下 都表现较为稳定:Laipelt 等^[28]以巴西为研究对象利 用 MODIS(moderate resolution imaging spectroradiometer)数据,结合谷歌地球工具改进了 SEBAL 模型,并利用该模型较为精确地模拟了不同生物群 落和土地覆盖条件下的蒸散发量。

目前,农田耗水和灌区水资源管理采用的蒸散 发数据主要是利用从点到面的插值法获取,区域 ET 的尺度效应不可避免。MODIS 数据每8d一次

(a) 土地利用类型

的监测频次,为区域农田耗水、用水管理的业务 化、常态化提供了关键的数据支撑。随着华北水 资源供需矛盾的日益加剧,现代灌溉农业用水管 理的精细化需求日益增加,有必要利用不同监测 手段开展不同时空尺度 ET 变化规律与尺度效应 的研究。基于上述背景,以永年冬小麦种植区为研 究对象,应用 SEBAL 模型,分别从时间和空间尺度 详细解析区域冬小麦不同生长期的蒸散发演变规 律,为科学指导区域灌溉、农业干旱监测与预警提供 技术支持。

1 研究区域与数据收集

1.1 研究区概况

永年区位于河北省南部、邯郸市主城区的北部 及东北部,地处东经114°20′~114°52′,北纬36°35′~ 36°56′。西部为低山丘陵,东部为平原,东南部为永 年洼湿地公园,湿地面积为598.9 hm²。现辖17个 乡镇,总面积为761.72 km²,其中耕地面积529 km², 占总面积的70%,冬小麦耕地面积为333.71 km², 零星分布建筑物。区域属暖温带半湿润大陆性季风 气候,多年平均降水量524.9 nm,降水量年内分配 主要集中在6—9月份,占全区年平均降水量的 67.7%;年均蒸散发量1997.5 nm。研究区作物主 要以冬小麦-夏玉米轮作,根据实地调研以及对模型 数据的收集、整理等,对区内冬小麦农田进行了识 别,见图1。选择各个时期的某一天遥感数据,作为 此生育期的代表,具体选择的日期和冬小麦各个生 育期时间变化情况见表1。

(b)冬小麦分布

图 1 永年区土地利用类型 Fig. 1 Land use distribution of Yongnian District

1.2 数据来源

1.2.1 遥感数据

利用 MODIS 网站(https://ladsweb.modaps. eosdis.nasa.gov/search/)下载 MOD09A1、MOD11A2 和 MOD13A1 3 种产品^[29]。其中:MOD09A1 和 MOD11A2 的空间分辨率为 500 m、时间分辨率为 8 d,产品数据是表面反射、地表温度和辐射率; MOD13A1 的空间分辨率为1 000 m、时间分辨率为 16 d,产品数据是 NDVI(normalized difference vegetation index)植被指数。查阅遥感过境天数,根据

区域冬小麦各生长期(表 1),结合实地调研结果,保 证每一个生长期且每一月至少有一景数据的前提下 获取了 13景 MODIS数据,具体遥感数据时间分布 见表 1。

表 1 冬小麦不同生育期统计及 MODIS 影像时间 Tab. 1 Different growth stages of winter wheat and MODIS image time

生育期	时期	MODIS影像时间
出苗期	10月中上旬	2019年10月16日
分蘖期	10月中下旬	2019年10月24日
越冬期	11月下旬—2月中上旬	2019年11月09日
越冬期	11月下旬—2月中上旬	2019年12月03日
越冬期	11月下旬—2月中上旬	2020年01月25日
返青期	2月下旬—3月上旬	2020年02月02日
起身期	3月中旬	2020年02月26日
拔节期	4月中上旬	2020年03月13日
孕穗期	4月下旬	2020年04月06日
抽穗期	4月下旬—5月上旬	2020年04月22日
开花期	5月中旬	2020年05月08日
灌浆期	5月中下旬	2020年05月24日
成熟期	6月上旬	2020年06月01日

1.2.2 其他数据

气象数据由邯郸市气象局提供 2019 年 10 月 16 日至 2020 年 6 月 1 日永年区及周边鸡泽县、曲 周县、武安市等 4 个气象站点的平均气温、风速、相 对湿度、可照时数和日照时数的逐日气象数据,太阳 辐射数据由国家气象科学数据中心(http://data. cma. cn/)下载。

DEM(digital elevation model)数据由地理空间数 据云(http://www.gscloud.cn/search)下载,ASTER GDEM 30M 数据,利用 ArcGIS 进行投影转换^[30],利 用永年行政区 shp 图进行掩膜、剪裁,得到永年区的 DEM 空间分布图(图 2),转换成.tif 格式后使用。

图 2 区域 DEM 数据 Fig. 2 Regional DEM data

2 方法介绍

2.1 SEBAL 模型原理

SEBAL 模型名为"陆地地表能量平衡算法"模型,基于最小气象数据需求来估计区域尺度上的能量分配的原理进行计算。使用该模型进行蒸散发的计算,其表达式^[31]为

λ • ET=R_n-G-H (1)
 式中:λ • ET 为潜热通量, W/m²;λ 为汽化潜热,
 J/kg;R_n 为净辐射通量, W/m²;G 为土壤热通量
 W/m²;H 为感热通量, W/m²。

SEBAL 模型的反演过程见图 3,根据地表能量 平衡原理,结合参考文献[18]中的各个步骤和公式, 使用 MODIS 数据得到地表反照率、植被指数和地 表温度等关键参数,代入公式计算得出研究区域内 的各个热通量;通过地表能量平衡方程,得出遥感卫 星过境时的瞬时蒸散发;选取蒸发比不变法,进行日 尺度的扩展,推导出区域日蒸散发量。

2.2 Penman-Monteith 公式

Penman-Monteith 公式(以下简称"P-M 公式") 由 Evants^[32]和 Monteith^[33]研究下垫面 ET 时引入 表面阻力的概念而导出,为非饱和下垫面的蒸发研 究开辟了新途径。1998年,联合国粮农组织 FAO (Food and Agriculture Organization of the United Nations)改进公式后,已被证实具有较高的精度及 可适用性^[34],选择 P-M 公式对 SEBAL 模型进行验 证。根据 P-M 公式,蒸腾量^[35]可按下式计算:

$$ET_{0} = \frac{0.408\Delta(R_{n}-G) + \gamma \frac{900}{T+273}u_{2}(e_{s}-e_{a})}{\Delta + \gamma(1+0.34u_{2})} \quad (2)$$

$$ET = K_{\rm s} K_{\rm c} \cdot ET_0 \tag{3}$$

$$K_{s} = \frac{\theta - \theta_{up}}{\theta_{F} - \theta_{up}} \not\equiv K_{s} = \frac{\theta - \theta_{up}}{\theta_{j} - \theta_{up}}$$

$$\tag{4}$$

式中:K。是无水分胁迫条件下作物腾发量和参照腾 发量的比值数;K。是土壤水分修正系数,而当土壤 水分不是作物蒸发蒸腾的限制因素时,土壤水分修 正系数 K_s=1; *θ* 是计算时段内作物根系活动层的 平均土壤含水量; *θ*_{up}, *θ*_F 是凋萎系数与田间持水量; *θ*_j 是作物蒸发开始受影响时的临界土壤含水量。

其中,K。它反映了区别实际作物与参照作物草 的作物高度、冠层阻力、土壤蒸发、作物-土壤表面反 射率等主要特性的综合影响^[36],因此K。随作物的 各种特性和气候的变化而变化。不仅作物类型不同 其系数K。不同,同一作物全生育期中的特性变化 也同样影响作物系数K。;当作物生长发育,地面覆 盖程度,作物高度和叶面积都变化时,使得同一作物 不同生长阶段的腾发量亦存在差别,相应地,会导致 给定的作物的 K。值在整个生长期变化。本文采用 分段单值平均作物系数法,依据 FAO-56^[35],冬小麦 各生育期 K。在[0.4,1.15]区间内变化。

图 3 SEBAL 模型反演过程 Fig. 3 SEBAL model inversion process

3 SEBAL 模型的验证

依据每个生长期或每个月校验一次的原则,选择与遥感数据相对应的日气象数据按照 P-M 公式

(2)~(4)计算得出日蒸散发量。依据 FAO 给出的 参考值,在出苗期至越冬期的 K。为 0.4,返青期至 起身期的 K。为 0.7,拔节期至和灌浆期的 K。为 1.15;由于 6月 1日尚处于小麦成熟初期,K。处于 由 K_{emid}下降到 K_{cend}的过程,考虑这一实际并参考他 人成果^[37],在此选择 K。为 0.7。

经计算后,将 SEBAL 模型的结果与之进行对 比,见图 4。总体来看:虽然 SEBAL 模型值与 P-M 公式计算的值会有一定的偏差,但二者的变化趋势 基本一致,以 P-M 公式计算结果为基准值计算的均 方根误差为 0.65;进一步,将二者进行线性拟合,其 方程为 y=1.077 3x+0.149 3,且 R² 为 0.941 2,见 图 5,整体相关性良好。因此,判定 SEBAL 模型在 永年冬小麦种植区具有一定的适用性,可以用于估 算区域冬小麦的实际蒸散量。

4 蒸散发量变化规律

基于 2.1 小节所述地表能量平衡方程,将选取 的 13 景 MODIS 数据逐步代入计算,得出区域冬小 麦不同生长期内对应的日蒸散发量,并从时间分布 和空间分布来分析其变化规律。

图 4 P-M 法与 SEBAL 法结果对比 Fig. 4 Comparation of P-M method and SEBAL method

4.1 时间分布特征

整个冬小麦生长过程中,永年冬小麦种植区蒸 散发的变化趋势呈现出波动式上升趋势(图 6),可 根据蒸散发数值的大小分出苗期至返青期、起身期 至孕穗期和拔节期至成熟期 3 个阶段,各阶段的具 体变化分析如下:

在出苗期至返青期这一阶段,区域的蒸散发在 0.52 mm/d至1.49 mm/d变化。这一时期处于秋 冬季,研究区太阳高度角较小,太阳辐射到达研究区 地表的能量较少,且接收地表的土壤处于封冻期,小 麦生长也很缓慢,所以在整个作物生长周期中,这一阶段研究区的蒸散发量最低。

图 6 冬小麦不同生育期日蒸散发及 LAI 变化 Fig. 6 Daily evapotranspiration and LAI of winter wheat in different growth stages

在起身期到孕穗期,这一时期位于春季,随着气温的回升,土地逐渐回暖,小麦逐渐返青并进入生长期,蒸散发逐渐增加,较上一阶段有了较为明显的增幅,研究区蒸散发在 3.18 mm/d 至 4.47 mm/d 变化。

在拔节期至成熟期,蒸散发数值明显增大,在 4.47 mm/d至8.06 mm/d变化。这一阶段主要在 4—5月,随着太阳的移动,温度上升,植被开始快速 生长,同时该时期也是小麦生长最旺盛的关键时期。 经过调查可知,若无降雨,当地农户都会及时灌溉, 保证了作物生长必需的水分,植被的快速生长使得 植被的蒸腾作用变大,从而使得冬小麦的蒸腾量和 土壤水分蒸发量逐渐上升,造成研究区的蒸散发显 著增加。

4.2 空间分布特征

利用 Python、ArcGIS 等工具,以 SEBAL 模型 计算结果为基础,反演出永年冬小麦种植区冬小麦 整个生育期不同阶段的蒸散发空间分布情况大致分 3 类,见图 7。

图 7 冬小麦生育期蒸散量 Fig. 7 Winter wheat evapotranspiration of different growth stages

Fig. 7 Winter wheat evapotranspiration of different growth stages

研究与探讨

• 819 •

蒸散发整体呈现出东南高、西部次之、北部低的 变化趋势,见图 7(a)~7(b)和 7(m)。其中:东南部 地区广府镇、张西堡镇、西河庄乡的大部分地区蒸散 量的变化范围为 0.41~10.24 mm/d;西部乡镇永 合会镇、西阳城乡以及界河店乡和临洺关镇大部分 地区的蒸散发变化为 0.43~8.69 mm/d;东部地区 辛庄堡乡以及东阳庄镇的大部分地区蒸散发变化为 0.19~8.13 mm/d;中部和北部的其他地区讲武镇、 曲陌乡、小龙马乡、刘汉乡、正西乡等大部分地区蒸 散发变化为 0.01~7.96 mm/d。由于受到云层影 响,中部地区出现空值,因此这一分布是东南、西部 和北部区域的局部相对特征。

蒸散发整体呈现出中部及北部地区较高、西部 及东南低的变化趋势,见图7(c)~7(f)和7(h)~7 (1)。其中:中部地区刘营镇、西苏镇、讲武镇、曲陌乡 和小龙马乡大部分地区蒸散发变化为0~7.46 mm/d; 北部地区刘汉乡、正西乡、大北汪镇的大部分地区蒸 散发变化为0.15~6.98 mm/d;东部地区辛庄堡乡 以及东阳庄镇的大部分地区蒸散发变化为0.15~ 6.54 mm/d;东南部地区广府镇、张西堡镇、西河庄乡 的大部分地区蒸散量的变化范围为0.12~5.79 mm/d; 西部乡镇永合会镇、西阳城乡以及界河店乡和临洺关 镇大部分地区的蒸散发变化为0~5.49 mm/d。

蒸散发呈现中部高、四周低的变化趋势,如图 7(g)所示。其中:中部地区刘营镇、西苏镇、讲武镇、 曲陌乡和小龙马乡大部分地区蒸散发变化为 0.25~ 2.58 mm/d;西部乡镇永合会镇、西阳城乡以及界河 店乡和临洺关镇大部分地区的蒸散发变化为 0.20~ 2.04 mm/d;东部地区辛庄堡乡以及东阳庄镇的大 部分地区蒸散发变化为 0.30~1.86 mm/d;北部地 区刘汉乡、正西乡、大北汪镇的大部分地区蒸散发变 化为 0.37~1.79 mm/d;东南部地区广府镇、张西 堡镇、西河庄乡的大部分地区蒸散量的变化范围为 0.83~1.35 mm/d。

综上并考虑云层对数据的反演影响可知,种植 区冬小麦的生育期蒸散发的空间分布大致呈现西部 低、东部高的趋势。依据永年冬小麦种植分布,并结 合地形特征和水文地质情况分布可知:区域多为低 山丘陵区,西部冬小麦种植面积有限,使得作物蒸散 发贡献小;中部及东部地区,主要以平原为主,土地 类型主要为耕地类型,水源丰富,植被长势较好,具 备了良好的蒸散条件,因此东部平原的蒸散量在整 个生长期内,相较其他片区而言,量值较高。

综合区域蒸散发时间、蒸散量分布特征(图 6~ 7、表 2),进一步将研究区日蒸散量空间分布情况随 着冬小麦不同生育期的演变规律分析如下:

在出苗期至返青期这一阶段,随着时间的推移, 区域蒸散发的峰值呈现由东南地区的广府镇、张西 堡镇、西河庄乡向中部偏北、东部的刘营镇、西苏镇、 讲武镇、曲陌乡、小龙马乡、辛庄堡乡以及东阳庄 镇、刘汉乡、正西乡、大北汪镇转移的趋势,其峰值 大小由 0.11~0.52 mm/d到 1.93~2.39 mm/d。 而东南部湖泊(永年洼)附近的小麦,因土壤含水 量较高,呈现生育期初期的 ET 高于周边其他区域 的特征。

在起身期到孕穗期这一阶段,整个研究区蒸散 发空间分布变化较为一致,随着小麦生长和气温的 升高,整个区域的蒸散发呈现均一化的上升趋势,区 域蒸散发峰值在空间并未发生转移。

在开花期至成熟期这一阶段,随着作物的逐渐 成熟,区域蒸散发呈现升至峰值后又缓慢下降的趋势,峰值由中北部的刘营镇、讲武镇、曲陌乡、辛庄堡 乡以及东阳庄镇、刘汉乡、正西乡、大北汪镇向中南 部临洺关镇部分地区、西苏镇、小龙马乡、广府镇、 张西堡镇等地区转移。由图 7(m)并结合调研可 知,因冬小麦种植差异,北部部分地区在成熟期先 行收割,作物蒸散发贡献锐减,故其区域蒸散发数 值逐渐降低。

<i>私 2 令小支</i> 小问王自州内区域日然散发统	表 2	冬小麦不同生育期内区域日蒸散发统	计
------------------------------	-----	------------------	---

Tab. 2 Regional daily evapotranspiration of winter wheat in different growth stages

时期	区域最大值/ (mm・d ⁻¹)	区域平均值/ (mm・d ⁻¹)	LAI
出苗期(2019-10-16)	1.03	0.52	1.31
分蘖期(2019-10-24)	2.39	1.49	1.31
越冬期(2019-11-09)	1.53	0.93	1.45
越冬期(2019-12-03)	2.54	1.27	1.65
越冬期(2020-01-25)	1.94	1.25	1.14
越冬期(2020-02-02)	2.00	1.13	1.42
返青期(2020-02-26)	2.58	1.45	1.61
起身期(2020-03-13)	5.85	3.18	2.13
拔节期(2020-04-06)	7.49	4.47	3.05
孕穗期(2020-04-22)	6.96	4.40	3.76
开花期(2020-05-08)	0.97	0.65	4.05
灌浆期(2020-05-24)	13.66	8.06	4.08
成熟期(2020-06-01)	10.24	5.12	3.13

综上可知,在气候条件和土地利用类型等共同 影响下,永年冬小麦种植区的蒸散发具有一定的时 空差异性,空间上中部和北部地区蒸散发最大、东南 地区和西部地区的蒸散发值较低,时间上蒸散发量

• 820 • 研究与探讨

值的顺序为:开花期至成熟期前大于起身期至孕穗 期大于出苗期至返青期,整体表现为夏季蒸散发最 大,春季次之,秋季和冬季最小。

4.3 与 LAI 相关性分析

叶面积指数(LAI)是指太阳光照射时冬小麦的 叶片垂直投影面积和占地面积的比值,是反映作物 生长状况的重要指标之一,值的大小与产量多少关 系十分紧密。正是由于叶面积指数可以很好地反映 作物生长状况,因此,其值大小和蒸散发也密切相 关。因此将各代表日的 LAI 一并列出(表 2、图 8) 并进行分析,其中 LAI 采用 MODIS 数据直接反演 得到。

LAI of winter wheat

由图 8 可知:LAI 在出苗期至返青期数值较小 且波动较小,数值在 1.31~1.61,区域蒸散发数值 在 1.14~1.61 mm/d;随着作物的生长进入拔节期 至成熟期这一关键阶段,LAI 逐渐变大,蒸散量也 逐渐达到最高值,进入成熟期后,LAI 不再变化,蒸 散发量也随之降低,反映了此次反演的蒸散发与 LAI 变化的密切相关性以及和作物生长变化规律 的一致性。

进一步以模型反演的日均蒸散发值为纵坐标、以冬小麦的LAI为横坐标将二者进行拟合,结果(图 8)显示,两者呈乘幂关系,其方程为y=0.5927 $x^{1.7658}$, R^2 高达到 0.88,揭示了永年冬小麦蒸散发随LAI变化而正向增加的定量关系。

5 结 论

本文采用 P-M 公式校验后的 SEBAL 模型对 2019 年 10 月至 2020 年 6 月河北永年冬小麦种植 区全生育期内的蒸散发进行了遥感估算,并就冬小 麦不同生育期的日蒸散量的时空变化开展了分析, 得到如下结论:

区域日蒸散发量在冬小麦全生育期内波动中呈

上升趋势;在出苗期至返青期蒸散发较低,区域的蒸 散发在 0.52~1.49 mm/d;在起身期到孕穗期,蒸 散发在 3.18~4.47 mm/d,较上一阶段,有了明显 的增幅;在拔节期至成熟期(关键生长期),随着小麦 迅速生长,区域蒸散发迅速增加,在 4.47 mm/d 至 8.06 mm/d 变化。整体表现为夏季蒸散发最大,春 季次之,秋季、冬季最小的分布规律。

永年冬小麦种植区的蒸散发具有一定的时空差 异性。区域冬小麦在出苗期至返青期蒸散发的峰值 呈现由东南地区向中部转移的趋势。时间上蒸散发 量在不同生长期的演变呈现出开花期至成熟期前大 于起身期至孕穗期大于出苗期至返青期的规律。空 间上永年中部和北部小麦种植区的蒸散发最大、东 南地区次之、西部地区的蒸散发值较低的变化趋势, 与研究区地形和水文地质特征造成的耕作方式的差 异性较为一致。

在选用的全生育期内,冬小麦日蒸散量与 LAI 的平均值呈较为显著的乘幂关系,且 R² 高达 0.88, 说明 LAI 对区域蒸散发量的大小影响较为显著。

本研究基于能量平衡原理对河北永年小麦种植 区蒸散发量进行了估算,日尺度计算采用蒸发比不 变法,在未来可尝试使用不同蒸散发的时间尺度扩 展法相互结合得到作物的蒸散发值。受经费和疫情 影响,仅分析了作物 LAI 和区域蒸散发的相关性, 未来将开展根系的生物量测定,在开展 ET 与根系、 LAI 的定量化关系解析的基础上,充分考虑雨养和 不同灌溉制度下的水分胁迫对 ET 的影响,更深入 地开展冬小麦区域蒸散发的时空变化分析。

参考文献(References):

- ZHAO L L, XIA J, XU C Y, et al. Evapotranspiration estimation methods in hydrological models[J]. Journal of Geographical Sciences, 2013, 23(2): 359-369. DOI: 10.1007/s11442-013-1015-9.
- [2] ZENG Z, WANG T, ZHOU F, et al. A worldwide analysis of spatiotemporal changes in water balance-based evapotranspiration from 1982 to 2009 [J]. Journal of Geophysical Research: Atmospheres, 2014, 119 (3): 1186-1202. DOI: 10.1002/2013JD020941.
- [3] 宁亚洲,张福平,冯起,等. 基于 SEBAL 模型的疏勒河 流域蒸散发估算与灌溉效率评价[J]. 干旱区地理, 2020,43(4):928-938. (NING Y Z, ZHANG F P, FENG Q, et al. Estimation of evapotranspiration in Shule River basin based on SEBAL model and evaluation on irrigation efficiency[J]. Arid Land Geography, 2020,43(4):928-938. (in Chinese)) DOI:10.12118/j.
 - 研究与探讨 821 •

issn. 1000-6060. 2020. 04. 08.

- [4] 易永红,杨大文,刘钰,等.区域蒸散发遥感模型研究的 进展[J].水利学报,2008,39(9):1118-1124.(YI Y H,YANG D W,LIU Y, et al. Review of study on regional evapotranspiration modeling based on remote sensing[J]. Journal of Hydraulic Engineering,2008,39 (9):1118-1124.(in Chinese)) DOI:0559-9350(2008) 09-1118-07.
- BROWN K W, ROSENBERG N J. A resistance model to evapotranspiration and its application to a sugar beet filed[J]. Agronomy Journal, 1973, 65: 341-347. DOI: 10.2134/agronj1973.00021962006500030001x.
- [6] 宋璐璐,尹云鹤,吴绍洪. 蒸散发测定方法研究进展
 [J]. 地理科学进展,2012,31(9):1186-1195. (SONG L L, YIN Y H, WU S H. Advancements of the metrics of evapotranspiration[J]. Progress in Geography,2012,31 (9):1186-1195. (in Chinese)) DOI: 10. 11820/dlkxjz. 2012. 09. 010.
- [7] 尚松浩,蒋磊,杨雨亭. 基于遥感的农业用水效率评价 方法研究进展[J]. 农业机械学报,2015,46(10):81-92. (SHANG S H, JIANG L, YANG Y T. Review of remote sensing-based assessment method for irrigation and crop water use efficiency[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46 (10):81-92. (in Chinese)) DOI:10.6041/j. issn. 1000-1298. 2015. 10.013.
- [8] 母艳梅,李俊,同小娟,等. 基于 Penman-Monteith 模型和 Shuttleworth-Wallace 模型对太行山南麓人工林蒸散的模拟[J].北京林业大学学报,2017,39(11):35-44. (MU Y M,LI J,TONG X J, et al. Evapotranspiration simulated by Penman-Monteith and Shuttleworth-Wallace models over a mixed plantation in the southern foot of the Taihang Mountain, northern China [J]. Journal of Beijing Forestry University, 2017, 39(11): 35-44. (in Chinese)) DOI: 10. 13332/j. 1000-1522. 20170060.
- [9] 李炜,司建华,苗政.林分耗水的尺度扩展研究进展
 [J].生态学杂志,2012,31(3):714-723.(LIW,SIJH, MIAO Z. Advance in the application of upscaling methods to stand evapotranspiration[J]. Chinese Journal of Ecology,2012,31(3):714-723.(in Chinese)) DOI:10.
 13292/j.1000-4890.2012.0140.
- [10] 陈吉琴.近 50 a 来长江流域气象因素分析及蒸发变 化原因初探[D].南京:河海大学,2007. (CHEN J Q. Analysis of meteorological elements and study on the reason of variation of evaporation in Changjing River basin in recent 50 a[D]. Nanjing: Hohai University, 2007. (in Chinese)).
- [11] BASTIAANSSEN W G M, MENENTI M, FEDDES

R A, et al. A remote sensing surface energy balance algorithm for land (SEBAL); Formulation[J]. Journal of Hydrology, 1998, 212: 198-213. DOI: 10. 1016/ s0022-1694(98)00253-4.

- [12] SU Z. The surface energy balance system (SEBS) for estimation of turbulent heat fluxes[J]. Hydrology and Earth System Sciences, 2002, 6 (1): 85-99. DOI: 10. 5194/hess-6-85-2002.
- [13] NORMAN J M, KUSTAS W P, HUMES K S. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature[J]. Agricultural and Forest Meteorology, 1995, 77 (3-4): 263-293. DOI: 10. 1016/0168-1923(96)02344-1.
- [14] GUAN H, WILSON J L. A hybrid dual-source model for potential evaporation and transpiration partitioning
 [J]. Journal of Hydrology, 2009, 377(3-4): 405-416. DOI: 10. 1016/j. jhydrol. 2009. 08. 037.
- [15] 杨雨亭,尚松浩.双源蒸散发模型估算潜在蒸散发量的对比[J].农业工程学报,2012,28(24):85-91.
 (YANG Y T, SHANG S H. Comparison of dual-source evapotranspiration models in estimating potential evaporation and transpiration[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2012,28(24):85-91. (in Chinese)) DOI:10.3969/j.issn.1002-6819.2012.24. 013.
- [16] YANG Y T, SHANG S H, GUAN H D. Development of a soil-plant-atmosphere continuum model (HDS-SPAC) based on hybrid dual-source approach and its verification in wheat field[J]. Science China Technological Sciences, 2012, 55 (10): 2671-2685. DOI: 10. 1007/s11431-012-4974-7.
- [17] YANG Y T, SHANG S H. A hybrid dual source scheme and trapezoid frame work based evapotranspiration model (HTEM) using satellite images: Algorithm and model test[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(5): 2284-2300. DOI: 10. 1007/ 978-3-662-46173-0_5.
- [18] 金楷仑,郝璐.基于遥感数据与 SEBAL 模型的江浙 沪地区地表蒸散反演[J].国土资源遥感,2020,32
 (2):204-212. (JIN K L, HAO L. Evapotranspiration estimation in the Jiangsu-Zhejiang-Shanghai area based on remote sensing data and SEBAL model[J]. Remote Sensing for Land and Resources, 2020, 32
 (2):204-212. (in Chinese)) DOI: 10.6046/gtzyyg. 2020.02.26.
- [19] 陈强, 苟思, 严登华, 等. 基于 SEBAL 模型的区域 ET 计算及气象参数敏感性分析: 以天津市为例[J]. 资源

• 822 • 研究与探讨

科学, 2009, 31 (8): 1303-1308. (CHEN Q, GOU S, YAN D H, et al. The regional ET calculation based on SEBAL model and the sensitivity analysis of meteorological parameters: A case study of Tianjing City[J]. Resources Science, 2009, 31 (8): 1303-1308. (in Chinese)) DOI: 1007-7588(2009)08-1303-06.

- [20] 张文发,苏涛,雷波,等.基于多源数据的内蒙古察汗 淖尔流域作物生育期实际蒸散发分析[J].节水灌溉: 2021(10):1-6. (ZHANG W F, SU T, LEI B, et al. Analysis of actual evapotranspiration during crop growth period in Chahanaoer watershed of Inner Mongolia based on multi-source data[J]. Water Saving Irrigation: 2021(10):1-6. (in Chinese)). http:// kns. cnki. net/kcms/detail/42. 1420. TV. 20210729. 1344. 002. html. DOI:1007-4929(2021)10-0001-06.
- [21] 梁文涛,尹航,韩振华,等. 基于遥感的塔布河流域蒸 散发时空变化分析[J]. 内蒙古农业大学学报(自然科 学版): 2022, 43 (1): 27-34. (LIANG W T, YIN H, HAN Z H, et al. Temporal and spatial variation analysis of evapotranspiration in Tabu River basin based on remote sensing [J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition): 2022,43(1): 27-34. (in Chinese)). DOI: 10. 16853/j. cnki. 1009-3575. 2022. 01. 006.
- [22] 张亮,崔林林,苑跃. 基于 SEBAL 模型的若尔盖高原 蒸散量时空变化[J]. 四川环境,2021,40(4):80-88.
 (ZHANG L, CUI L L, YUAN Y. Spatial-temporal variation of evapotranspiration in Ruoergai plateau based on SEBAL model[J]. Sichuan Environment, 2021,40(4):80-88. (in Chinese)) DOI:10.14034/j. cnki. schj. 2021.04.011.
- [23] 杨建莹,霍治国,邬定荣,等. 基于 MODIS 和 SEBAL 模型的黄淮海平原冬小麦水分生产力研究[J]. 中国 农业气象,2017,38(7):435-446. (YANG J Y, HUO Z G, WU D R, et al. Investigation on water productivity of winter wheat based on MODIS and SEBAL in the Huang-Huai-Hai plain [J]. Chinese Journal of Agrometeorology, 2017, 38 (7): 435-446. (in Chinese)) DOI:10.3969/j.issn.1000-6362.2017.07.005.
- [24] 王强,康慕谊,邢开雄,等. 基于 SEBAL 模型的冀蒙 接壤区 ET 反演[J]. 北京师范大学学报(自然科学 版),2011,47(1):91-96. (WANG Q, KANG M Y, XING K X, et al. Retrieval of evapotranspiration in contiguous area of Hebei-Inner Mongolia based on SEBAL model[J]. Journal of Beijing Normal University (Natural Science),2011,47(1):91-96. (in Chinese)) DOI; CNKI; SUN; BSDZ. 0. 2011-01-022.
- [25] 郭二旺,郭乙霏,罗蔚然,等. 基于 Landsat 8 和 Sentinel-1A 数据的焦作广利灌区夏玉米土壤墒情监测方

法研究[J]. 中国农村水利水电,2019(7):22-25,34. (GUO E W,GUO Y F,LUO W R,et al. Soil moisture retrieval of summer maize in the irrigation area based on Sentinel-1A[J]. China Rural Water and Hydropower,2019(7):22-25,34. (in Chinese)) DOI:1007-2284(2019)07-0022-04.

- [26] 丁杰,陈鹤,魏征,等.改进 SEBS 模型在大兴地区农 田蒸散发反演中的应用[J].灌溉排水学报,2018,37 (S2):121-126.(DING J,CHEN H,WEI Z,et al. Application of improved SEBS model for evapotranspiration retrievals over crop land in Daxing District[J]. Journal of Irrigation and Drainage,2018,37(S2):121-126.(in Chinese)) DOI: 10. 13522/j. cnki. ggps. 20180358.
- [27] CHENG M, JIAO X, LI B, et al. Long time series of daily evapotranspiration in China based on the SEBAL model and multisource images and validation [J].
 Earth System Science Data, 2021, 13(8): 3995-4017.
 DOI: 10. 5194/essd-13-3995-2021.
- [28] LAIPELT L, HENRIQUE R, KAYSER B, et al. Long-term monitoring of evapotranspiration using the SEBAL algorithm and Google Earth Engine cloud computing
 [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 178: 81-96. DOI: 10. 1016/j. isprsjprs. 2021. 05. 018.
- [29] 梁华.基于 TVDI 的新疆祁漫塔格土壤湿度遥感反演 研究[D].北京:中国地质大学,2016.(LIANG H. Remote sensing retrieval study of soil moisture in Qmantage,Xinjiang based on TVDI[D]. Beijing;China University of Geosciences (Beijing),2016.(in Chinese))
- [30] 宋增芳,曾建军,金彦兆,等. 基于 SWAT 模型和 SU-FI-2 算法的石羊河流域月径流分布式模拟[J]. 水土 保持通报,2016,36(5):172-177. (SONG Z F,ZENG J J,JIN Y Z, et al. Distributed simulation of monthly runoff using SWAT and SUFI-2 algorithm in Shiyang River basin[J]. Bulletin of Soil and Water Conservation,2016,36(5):172-177. (in Chinese)) DOI:10. 13961/j. enki. stbetb. 2016.05.035.
- [31] BASTIAANSSEN W G M, MENENTI M, FEDDES R A, et al. A remote sensing surface energy balance algorithm for land (SEBAL): Formulation[J]. Journal of Hydrology, 1998, 212:198-213.
- [32] EVANTS L T. Environmental control of plant growth
 [C]//Proceedings of a Symposium Heldat Canberra,
 Australia, August, 1962. University of Oxford, 1963.
 DOI: 10. 1016/S0022-328X(00)00665-3.
- [33] MONTEITH J L. Evaporation and environment[J]. Symposia of the Society for Experimental Biology,

1965,19:205-234.

- [34] 汤鹏程. 西藏高海拔地区 ET。计算公式试验率定与 青稞作物系数推求[D]. 北京:中国水利水电科学研 究院,2019. (TANG P C. Experimental calibration of reference evapotranspiration and determination of crop coefficient in high-elevation areas of Tibet[D]. Beijing:China Institute of Water Resource & Hydropower Research (IWHR),2019. (in Chinese))
- [35] RICHARD G, LUIS S, PEREIRA D R, et al. Crop evapotranspiration: Guidelines for computing crop water requirements FAO irrigation and drainage paper 56. https://www.taodocs.com/p-61704622.html#fileList.
- 【36】 张瑜.大田玉米作物系数机地协同估算方法研究
 【D].咸阳:中国科学院大学,2019.(ZHANG Y. Crop coefficient estimation method of field maize by UAV remote sensing and ground sensor monitoring [D]. Xianyang: The University of Chinese Academy of Sciences, 2019. (in Chinese))
- [37] 刘钰, PEREIRA L S. 对 FAO 推荐的作物系数计算 方法的验证[J]. 农业工程学报,2000,16(5):26-30.
 (LIU Y, PEREIRA L S. Validation of FAO for methods for estimating crop coefficients[J]. Transactions of the Chinese Society of Agricultural Engineering, 2000,16(5):26-30. (in Chinese))

Temporal-spatial analysis on evapotranspiration of winter wheat in whole growth stage

LUAN Qinghua^{1,2}, HE Shuai², HE Lixin², ZHOU Wei², WANG Lishu², MA Jing²

(1. College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China;

2. Hebei Key Laboratory of Intelligent Water Conservancy, Hebei University of Engineering, Handan 056038, China) Abstract: The spatio-temporal characteristic of evapotranspiration can not only quantify the water loss caused by evaporation, but also reflect the relationship between land use, water resource allocation and utilization. It was also an indispensable basic data for calculating the balance of agricultural water and soil resources, and planning, design and management of irrigation projects. With the increasing contradiction between water resources supply and demand and the refined requirements of modern irrigation and agricultural water management, it was necessary to illustrate evapotranspiration evolution rules on different spatial and temporal scales.

To illuminate the changing laws of evapotranspiration in different growth stages of winter wheat, Yongnian District of Handan city was selected as the study area, and the validated regional SEBAL model through Penman-Monteith model was applied for simulating evapotranspiration. The mean square root of variance was 0. 65 which shows that SEBAL model accuracy was higher, and the model can provide relatively accurate ET value for the study area. Based on this, SEBAL model was applied to simulate the evapotranspiration of wheat at different growth stages from October 2019 to June 2020, and the spatio-temporal evolution law of evapotranspiration in different growth periods of regional winter wheat was analyzed respectively.

The maximum daily evapotranspiration during the whole growth stage of winter wheat is from 0.97 mm/d to 13.66 mm/d, and the average one ranges from 0.52 mm/d to 8.06 mm/d; the evapotranspiration was low in the west and high in the east, which was consistent with the irrigation difference caused by terrain and hydrgeological characteristics in the study area.

(1) The regional daily evapotranspiration rose with fluctuations during the whole growth stage of winter wheat; the evapotranspiration was relatively low from seedling stage to regreening stage, with the regional evapotranspiration ranging from 0.52 mm/d to 1.49 mm/d; from double ridge stage to booting stage, the evapotranspiration ranged from 3.18 mm/d to 4.47 mm/d; from jointing stage to mature period (the critical growth stage), regional evapotranspiration increased rapidly, ranging from 4.47 mm/d to 8.06 mm/d. Overall, the evapotranspiration was the largest in summer, followed by spring, and the evapotranspiration was the smallest in autumn and winter. (2) The evapotranspiration in Yongnian District had a certain degree of temporal and spatial differences. The peak of regional evapotranspiration was spatially shifted between the seedling stage and regreening stage. In terms of the different growing stages, regional evapotranspiration from flowering stage to mature period was higher than from double ridge stage to booting stage, and regional evapotranspiration from double ridge stage to booting stage was higher than from seedling stage to regreening stage. The evapotranspiration in the central and northern regions of Yongnian District was the largest, followed by the southeast region, and the evapotranspiration in the western region was lower. (3) In the selected whole growth period, the daily evapotranspiration of winter wheat had a significant power relation with the average value of LAI, and the R^2 was as high as 0.88, which revealed the quantitative relationship that the evapotranspiration increases positively with the change of LAI in Yongnian District. When the root quantity was low, the fluctuation of evapotranspiration was also low; with the rapid growth of crops, the root quantity showed an increasing trend and the evapotranspiration also showed a curved increasing trend in fluctuations.

Key words: evapotranspiration; SEBAL model; Penman-Monteith model; remote sensing inversion; temporal and spatial characteristics