宋志红, 王辉, 景唤, 等. 引江济淮工程水源区和受水区干旱遭遇风险[J]. 南水北调与水利科技(中英文), 2023, 21(5): 996-1005. SONG Z H, WANG H, JING H, et al. The risk of concurrent drought between the water source and destination regions of Yangtze-to-Huaihe River Water Diversion Project[J]. South-to-North Water Transfers and Water Science & Technology, 2023, 21(5): 996-1005. (in Chinese)

引江济淮工程水源区和受水区干旱遭遇风险

宋志红1,王辉2,景唤1,魏令伟2,江生金2,王永强1,王冬1

(1. 长江水利委员会长江科学院, 武汉 430010; 2. 河南省引江济淮工程有限公司, 郑州 450000)

摘要:干旱遭遇会严重影响跨流域调水工程的效益发挥,为科学评估引江济淮工程水源区和受水区的干旱遭遇风险,采用标准化降水蒸散指数(standardized precipitation evapotranspiration index, SPEI)和 Copula 理论构建水源区和 受水区干旱指数的联合分布,分析历史和未来两个区域干旱演变规律以及干旱遭遇风险变化。结果表明: 1960—2020年水源区和受水区发生干旱的频率分别为 27.32%和 29.78%;未来情景下两个区域干旱发生频率均 有明显增加,尤其高排放情景下特旱发生频率增加超过 10%;非汛期水源区和受水区同时发生干旱的概率比汛期 高 5.49%;未来汛期和全年干旱遭遇频率预计有明显增加,非汛期干旱遭遇频率略有降低;在中高排放情景下 (SSP2-4.5和 SSP5-8.5),远期干旱遭遇频率相对更高。干旱遭遇风险增加对跨流域调水工程效益发挥带来了巨大 挑战,因此迫切需要制定适应性策略,为调水工程正常运行管理和水资源可持续利用提供保障。

关键词:引江济淮工程;干旱遭遇;Copula理论;干旱指数;气候变化.

中图分类号: TV213.9 文献标志码: A DOI: 10.13476/j.cnki.nsbdqk.2023.0095

跨流域调水工程是指将水资源较丰富流域的水 调到水资源紧缺的流域,调节缺水地区的用水,以 满足缺水地区用水需求的水利工程,旨在解决水资 源时空分布不均等问题,对于缓解区域水资源供需 矛盾、促进区域经济社会发展具有重要意义[1-2]。引 江济淮工程是由长江下游干流向淮河中游地区跨 流域补水的水资源配置工程,是我国172项节水供 水重大水利工程之一[3-6]。长江中下游区域和淮河 流域位于我国东部季风区,受季风气候的影响,该 区域干旱灾害发生频繁^[7-8]。由于区域来水的时间 波动性和空间差异性,工程水源区和受水区容易出 现丰枯遭遇风险,如同时发生干旱事件等不利于调 水的情况,会对工程正常调度运行和效益发挥产生 重大影响。此外,随着气候变化和人类活动的影响, 全球范围的干旱以及高温热浪等复合极端事件呈 现多发频发态势,给区域水资源管理、生态系统和 经济社会可持续发展带来严重影响。因此,探究气 候变化下引江济淮工程水源区和受水区干旱遭遇 风险问题,对工程调度运行管理和水资源可持续利 用具有重要意义。

关于跨流域调水工程干旱遭遇风险问题的研究 主要分为区域降水丰枯遭遇[9-11]、径流丰枯遭遇[12] 以及干旱遭遇[13-15]等方面。研究对象主要有南水 北调工程[10,13-17]、引汉济渭工程[11-12,18-19]等。研究方 法大多采用 Copula 理论建立不同区域降水或径流 的联合分布分析区域间丰枯遭遇概率。如:何静等¹⁹、 石卫等^[10]和王伟等^[11]基于 Copula 理论分别构建了 滇中引水工程、南水北调中线工程和引汉济渭工程 水源区与相应受水区降水的联合分布模型,综合分 析了调水工程水源区与受水区降水丰枯遭遇风险; 丁志宏等^[20]应用 Copula 方法构造了南水北调西线 一期工程调水区径流与黄河上游来水之间的联合 分布,评估了有利于调水的频率;马盼盼等[12]分析 了汉江干支流径流丰枯遭遇对引汉济渭工程可调 水量的影响,并基于 Copula 函数确定了对调水影响 最大的丰枯遭遇组合的概率;张璐等[13]、余江游

收稿日期:2023-05-29 修回日期:2023-09-25 网络出版时间:2023-10-09

网络出版地址: https://link.cnki.net/urlid/13.1430.TV.20231007.1538.008

基金项目:国家重点研发计划项目(2022YFC3202300);国家自然科学基金项目(52309002);中央级公益性科研院所基本科研业务费项目 (CKSF2023298/SZ);引江济淮工程(河南段)工程科研服务项目(HNYJJH/JS/FWKY-2021004)

作者简介:宋志红(1995—),男,安徽安庆人,工程师,博士,主要从事水文水资源方面研究。E-mail: song.z.h@whu.edu.cn

等^[14]和 Liu 等^[15] 通过构建南水北调中线工程水源 区和受水区干旱指数的联合分布,探究了南水北调 中线工程水源区和受水区干旱遭遇风险及其对工 程运行的影响。此外,大量研究^[9-10,13-15] 也利用气候 模式数据预估了未来不同情景下区域间的丰枯遭 遇风险。

本文基于标准化降水蒸散发指数(standardized precipitation evapotranspiration index, SPEI)和 Copula 理论探究引江济淮工程水源区和受水区的干旱演 变规律以及干旱遭遇风险,并利用气候模式数据评 估未来干旱遭遇风险的变化,为调水工程运行管理 和水资源可持续利用提供科技支撑。

1 研究区域及数据

1.1 研究区域概况

引江济淮工程沟通长江、淮河两大水系,是跨 流域、跨省的重大战略性水资源配置工程。工程以 城乡供水和发展江淮航运为主,结合农业灌溉补水、 改善巢湖及淮河水生态环境、排涝等综合利用。工 程供水范围涉及皖豫2省15市55县(市、区),包 括安徽省安庆、铜陵、芜湖、马鞍山、合肥、六安、 滁州、淮南、蚌埠、淮北、宿州、阜阳、亳州 13 个市 以及河南省周口、商丘2个市的部分地区,受水区 总面积 7.40 万 km², 其中, 安徽省 5.85 万 km², 河南 省 1.21 万 km²。工程区内长江流域多年平均降水量 为1344 mm,淮河流域多年平均降水量为875 mm, 受季风气候影响,降水年内年际分配不均。工程设 计引江流量为 300 m³/s, 规划 2030 年多年平均引江 毛水量为 34.27 亿 m³, 受水区河道外引江济淮工程 净增供水量为 24.83 亿 m³, 其中, 安徽省 19.83 亿 m³, 河南省 5.00 亿 m³。以长江中下游区域为水源区,以 供水范围涉及的15个市为受水区,分析工程水源区 和受水区的干旱遭遇风险。

1.2 数据资料

研究使用的历史降水和气温数据来自国家地球 系统科学数据中心(http://www.geodata.cn/data/)提 供的 1960—2020 年中国 1 km 分辨率逐月降水量数 据集和逐月平均气温数据集^[21],该数据集是据 CRU 发布全球 0.5°气候数据以及 WorldClim 发布的全球 高分辨率气候数据,通过 Delta 空间降尺度方案在 中国地区降尺度生成,并用 496 个独立气象观测点 数据进行验证,验证结果可信,得到广泛使用。为 分析气候变化情景下未来干旱遭遇风险变化,本文 采用第六次国际耦合模式比较计划(CMIP6)的9个 气候模式数据,包括 SSP1-2.6(低强迫情景,2100年 辐射强迫稳定在2.6 W/m²)、SSP2-4.5(中等强迫情 景,2100年辐射强迫稳定在4.5 W/m²)和 SSP5-8.5 (高强迫情景,2100年辐射强迫稳定在8.5 W/m²) 3种情景^[22],具体信息见表1,并采用分位数校正方 法对 CMIP6 数据进行偏差校正^[23]。

表1 CMIP6 模式数据基本信息 Tab.1 Basic information of CMIP6 data

皮旦	桂星友扮	孤华祖扬	分辨率/
庁丂	旧京名你	研反机构	km
1	BCC-CSM2-MR	中国国家气候中心	100
2	CAMS-CSM1-0	中国气象科学研究院	100
3	CanESM5	加拿大气候模拟与分析中心	500
4	CESM2-WACCM	美国国家大气科学研究中心	100
5	CESM2	美国国家大气科学研究中心	100
6	EC-Earth3-Veg	欧盟地球系统模式联盟	100
7	IPSL-CM6A-LR	法国皮埃尔·西蒙·拉普拉斯研究所	250
8	MIROC6	日本海洋地球科学与技术处	250
9	MRI-ESM2-0	日本气象局气象研究所	100

2 研究方法

2.1 标准化降水蒸散指数

标准化降水蒸散指数(SPEI)^[24] 是一种广泛使用的气象干旱指数, SPEI 通过将潜在蒸散发与降水的差值的累积概率标准化来表征区域干湿状况偏离常年的程度,相对于标准化降水指数(SPI)仅考虑降水变化, SPEI 同时考虑气温因素,能够反映温升效应对干旱的影响,更加适用于气候变化下干旱演变规律的研究。本文选取 6 个月和 12 个月时间尺度的 SPEI 序列,分别对引江济淮工程水源区和受水区汛期(5—10 月)、非汛期(11 月—次年 4 月)及全年(1—12 月)3 个时期的干旱变化及遭遇风险进行研究。

利用引江济淮工程水源区和受水区月降水和气 温数据计算 SPEI-6 和 SPEI-12 序列,分析水源区和 受水区干旱演变规律。以每年 10 月份的 SPEI-6 值 表征该年非汛期干湿状况,每年 4 月份的 SPEI-6 值表 征该年非汛期干湿状况,每年 12 月份的 SPEI-12 值 表征该年整体干湿状况,并选择合适的边缘分布拟 合不同时期 SPEI 序列,最后基于 Copula 理论建立 水源区和受水区 SPEI 的联合分布,评估两个区域 干旱遭遇风险。 根据国家气象等级标准将干旱等级分为无旱、 轻旱、中旱、重旱和特旱5个等级^[25],具体分级指标 见表2。

表 2 SPEI 干旱等级划分 Tab. 2 Drought classification according to the SPEI

等级	类型	SPEI
1	无旱	(-0.5, +∞)
2	轻旱	(-1.0, -0.5]
3	中旱	(-1.5, -1.0]
4	重旱	(-2.0, -1.5]
5	特旱	(-∞, -2.0]

2.2 Copula 理论

Copula 函数是用于构造不同边缘分布随机变量间联合分布的有效工具,在多变量水文频率分析中得到广泛应用。Copula 理论的核心是 Sklar 定理:

以二维随机变量为例, 若 *H*(*x*,*y*) 是一个具有连续边 缘分布的 *F*(*x*) 和 *G*(*y*) 的二元联合分布函数, 则存在 唯一的 Copula 函数 *C*, 使得 *H*(*x*,*y*)=*C*[*F*(*x*), *G*(*y*)]。

采用 Copula 函数建立引江济淮工程水源区和 受水区不同时期 SPEI 的联合分布,分析其干旱遭 遇风险。首先需要选择合适的 SPEI 边缘分布,常 用的水文频率分析的分布函数有广义极值分布 (GEV)、P-III型分布、威布尔分布(Weibull,WEI)和 广义逻辑分布(GLO),利用极大似然法结合目估适 线法估计分布参数,然后根据均方根误差(RMSE)、 AIC(Akaike information criterion)信息准则和 Kolmogorov-Smirnov方法(K-S 检验)进行拟合优度 检验,选择最优分布作为 SPEI 边缘分布。表 3 给出 了水源区和受水区 SPEI 不同分布函数的 RMSE、 AIC 以及 K-S 检验的 *p* 值,综合对比多个指标,本文 选取 P-III 分布作为 SPEI 序列的边缘分布。

表 3 SPEI 边缘分布拟合优度 Tab. 3 The goodness-of-fit values of the SPEI probability distributions

-1-1-1	分布函数 -	水源区		受水区				
指怀		非汛期	汛期	全年	非汛期	汛期	全年	平均
	GEV	0.0265	0.0152	0.0342	0.0242	0.0533	0.0354	0.0315
DMCE	P-III	0.0250	0.0168	0.0353	0.0219	0.0475	0.0326	0.0299
KMSE	WEI	0.0292	0.0168	0.0371	0.0244	0.0454	0.0297	0.0304
	GLO	0.0258	0.0209	0.0384	0.0233	0.0476	0.0332	0.0315
	GEV	187.672	154.858	163.124	159.268	138.662	139.312	157.150
	P-III	186.363	154.403	161.917	157.250	139.203	140.290	156.571
AIC	WEI	187.612	155.161	161.995	158.669	138.171	139.799	156.901
	GLO	187.252	157.213	165.454	157.441	143.672	144.368	159.233
	GEV	0.848	1.000	0.774	0.867	0.490	0.864	0.807
	P-III	0.835	0.996	0.677	0.957	0.694	0.931	0.848
<i>p</i> 但.	WEI	0.839	0.999	0.669	0.861	0.766	0.940	0.846
	GLO	0.788	0.977	0.629	0.938	0.537	0.893	0.794

Copula 函数形式众多,采用3种常用的 Copula 函数建立不同区域 SPEI 的联合分布,分别为 Gumbel Copula、Clayton Copula和 Frank Copula。然后计算

不同 Copula 函数拟合的 AIC 值, 见表 4, 根据 AIC 平均值最小, 选取 Clayton Copula 函数作为引江济 淮工程水源区和受水区 SPEI 的联合分布函数。

表 4	不同 Copula 函数拟合的 AIC 值
Tab. 4	The AIC values of the Copula functions

Copula函数	汛期	非汛期	全年	平均
Clayton	-28.63	-41.86	-36.85	-35.78
Gumbel	-25.55	-60.64	-20.84	-35.68
Frank	-22.40	-47.13	-27.04	-32.19

3 研究结果

3.1 干旱演变规律

3.1.1 干旱指数变化趋势

图 1 给出了水源区和受水区 SPEI-6 和 SPEI-12 序列变化,可以看出,水源区和受水区旱涝过程 基本呈现周期性交替变化, SPEI-6 相对 SPEI-12 变 化更为剧烈。对于水源区,1972 年、1978—1979 年、 2011 年均发生了较为严重的干旱(重旱以上, SPEI<-1.5)。对于受水区,1966年、1978年、 1999—2001 年、2011 年均发生了较为严重的干旱。 这与历史实际旱情^[7,26-27]较为吻合,根据中国气象灾 害大典,1966年淮河流域春夏秋连旱,持续少雨,旱 情严重,河南、安徽两省大部 4—11月上旬总降水 量为 300~450 mm,较常年同期偏少四成到五成。 1978年长江中下游大部分省份降水量为 30年来最 少的,3—8月江淮地区大范围降水量较同期减少三 成到八成,长江中下游 1—10月降水量为有水文记 录以来最低,淮河流域径流仅为常年的 1/3。以上结 果表明 SPEI 能够较好地适用于研究区域干旱情况 的识别。

根据线性回归方法分析计算水源区和受水区历 史和未来情景下汛期、非汛期和全年 SPEI 序列的 趋势,见图 2,针对历史时期 1960—2020 年,两个区 域非汛期和全年 SPEI 呈现下降趋势,而汛期为增 加趋势,但趋势均不显著(p>0.05)。在未来不同气 候情景下,汛期和全年 SPEI 基本呈现显著的下降 趋势(p<0.05),表明未来将面临更加干旱的趋势,尤 其是高排放情景(SSP5-8.5)下变干趋势更显著,而 非汛期 SPEI则表现出增加的趋势,表明未来非汛 期变干趋势会有一定减弱。

Fig. 2 The trend of SPEI in different periods in water source and destination regions

3.1.2 干旱发生频率变化

根据 SPEI 序列值识别出当月干旱等级,并统计 不同等级干旱发生频率(发生干旱月数与总月数之 比),分析历史(1960—2020)和未来情景下水源区 和受水区不同干旱等级发生频率(图 3),箱线图表 示不同情景下 9 个气候模式的结果,红点表示历史 干旱发生频率。从整体来看, SPEI-6 和 SPEI-12 的 结果有较好的一致性,以 SPEI-6 为例, 1960—2020 年 水源区和受水区发生干旱的频率分别为27.32%和29.78%,发生重旱以上干旱频率分别为2.05%和4.51%。 气候模式结果显示未来两个区域干旱发生频率明显增加,尤其是在高排放情景下特旱发生频率显著 增加。对于水源区,在未来3个情景下干旱发生频率预计 增加7.88%~23.64%,特旱发生频率预计增加3.87%~ 14.52%。受水区在未来情景下干旱发生频率预计增加 7.21%~20.08%,特旱发生频率预计增加3.20%~13.86%。

3.2 干旱遭遇风险

3.2.1 历史干旱遭遇风险

根据 1960—2020 年引江济淮工程水源区和受 水区不同时期 SPEI 序列,采用 Clayton Copula 函数 建立两个区域 SPEI 的联合概率分布,见图 4,图中 彩色实线为联合概率等值线,圆点为 1960—2020 年 两个区域对应每年实际 SPEI 散点,其中红色点表 示两个区域均发生中旱以上干旱(SPEI<--1),汛期、 非汛期和全年两个区域干旱遭遇风险小于或接近 0.01(重现期为 100年)的年份分别为 1966年、 2011 年和 1978年,结合 3.1.1节分析,这些年份水 源区和受水区均发生了极端干旱事件,表明基于 Clayton Copula函数建立的水源区和受水区 SPEI 的 联合分布能够较好地模拟实际旱情及其遭遇情况。 根据联合分布,可计算出水源区和受水区不同干旱 等级遭遇概率,见表 5,不同时期水源区和受水区同 时发生干旱的概率分别为汛期 17.87%、非汛期 23.36% 和全年 15.89%, 同时发生中旱以上等级干 旱的概率为汛期 5.43%、非汛期 10.71% 和全年 6.69%, 同时发生特旱的概率均小于 1%。可以发现, 非汛期干旱遭遇概率要明显大于汛期, 这对调水工 程效益发挥会产生巨大影响。

3.2.2 未来干旱遭遇风险

根据未来不同气候情景数据计算出未来引江济 淮工程水源区和受水区不同等级干旱的遭遇频率, 见图 5,箱线图表示在未来不同情景下近期 (2025—2060年)和远期(2060—2100年)9个气候 模式的干旱遭遇频率分布情况,灰色圆点和方形点 分别为1960—2020年历史干旱遭遇频率和2025— 2100年未来气候模式平均干旱遭遇频率和2025— 2100年未来气候模式平均干旱遭遇频率和2025— 2100年未来气候模式平均干旱遭遇频率和60年 来情景下干旱遭遇频率对应是模式平均值。从图5 可以看出,未来汛期和全年干旱遭遇频率预计有明 显增加,非汛期干旱遭遇频率略有降低。在未来不 同情景下汛期干旱遭遇频率预计增加19.32%~ 41.25%, 重旱以上干旱遭遇频率增加 8.15%~29.45%, 全年干旱遭遇频率预计增加 9.55%~33.55%, 重旱以 上干旱遭遇频率增加 3.68%~21.98%, 而非汛期干旱 遭遇频率平均减少 5.38%。在中高排放情景(SSP24.5 和 SSP5-8.5)下,远期干旱遭遇频率相对更高,如在 SSP5-8.5 情景下 2060—2100 年汛期特旱遭遇频率增加了 33.66%,表明在中高排放情景下未来干旱遭遇频率是增加的趋势。

图 4 水源区和受水区 1960—2020 年不同时期 SPEI 联合分布

Fig. 4 The joint probability distribution of the SPEI in the water source and destination regions from 1960 to 2020

表 5	水源区和受水区不同干旱等级遭遇概率
-----	-------------------

Tab. 5 The probability of concurrent drought in water source and destination regions

%

时间	受水区/ 水源区	无旱	轻旱	中旱	重旱	特旱
	无旱	68.83	4.98	1.21	0.20	0.03
	轻旱	9.27	4.44	2.37	0.64	0.11
汛期	中旱	1.07	1.35	1.90	1.44	0.64
	重旱	0.02	0.05	0.13	0.31	0.84
	特旱	0	0	0	0	0.15
	无旱	61.30	9.04	2.05	0.15	0.00
	轻旱	3.83	5.71	5.12	0.93	0.03
非汛期	中旱	0.25	0.84	3.11	3.27	0.44
	重旱	0.01	0.02	0.16	1.10	1.64
	特旱	0	0	0	0.02	0.98
	无旱	68.59	6.06	1.37	0.18	0.02
	轻旱	6.89	4.50	2.47	0.54	0.06
全年	中旱	0.95	1.49	2.25	1.38	0.31
	重旱	0.05	0.12	0.40	0.81	0.79
	特旱	0	0	0.02	0.07	0.66

生态与环境 •1001•

表6 在未来气候情景下水源区和受水区干旱遭遇频率

%

Tab. 6 The frequency of concurrent drought in the water source and destination regions under future climate scenarios

	1 5	e		0		
时间	情景	时期	轻旱	中旱	重旱	特旱
	历史	1960—2020年	14.39	5.43	1.31	0.15
		近期	33.60	19.18	8.20	2.25
	SSP1-2.6	远期	33.81	20.48	10.60	4.29
		2025—2100年	33.71	19.86	9.46	3.32
(21) 甘田		近期	38.49	22.49	11.51	4.50
AL M	SSP2-4.5	远期	50.95	37.26	23.21	10.24
		2025—2100年	45.05	30.26	17.67	7.52
		近期	38.89	23.81	12.70	5.82
	SSP5-8.5	远期	70.71	60.24	47.02	33.81
		2025—2100年	55.64	42.98	30.76	20.55
	历史	1960—2020	23.36	10.71	3.74	0.98
		近期	16.53	7.54	2.91	0.40
	SSP1-2.6	远期	13.93	6.19	2.50	0.24
		2025—2100年	15.16	6.83	2.69	0.31
北河期		近期	18.52	9.92	3.04	0.66
-F11(3)	SSP2-4.5	远期	18.45	10.60	4.17	1.43
		2025—2100年	18.48	10.28	3.63	1.07
		近期	21.56	9.79	4.63	1.59
	SSP5-8.5	远期	19.17	11.43	4.88	1.67
		2025—2100年	20.30	10.65	4.76	1.63

表 6(续)							
Tab. 6 (Continued)							
时间	情景	时期	轻旱	中旱	重旱	特旱	
	历史	1960—2020年	15.89	6.69	2.33	0.66	
		近期	27.38	14.02	6.22	1.72	
	SSP1-2.6	远期	23.69	13.57	5.83	2.26	
		2025—2100年	25.44	13.78	6.02	2.01	
今年	SSP2-4.5	近期	34.66	20.50	7.94	2.65	
土十		远期	42.98	27.14	15.12	6.43	
		2025—2100年	39.04	24.00	11.72	4.64	
	SSP5-8.5	近期	36.51	21.96	10.19	3.70	
		远期	61.07	49.40	37.02	24.88	
		2025—2100年	49.44	36.40	24.31	14.85	

4 结论

针对引江济淮工程水源区和受水区干旱遭遇风 险问题展开研究,根据 1960—2020 年历史实测以 及 CMIP6 未来不同气候变化情景下月降水和气温 数据,基于 6 个月和 12 个月时间尺度的 SPEI 序列分析了历史和未来水源区和受水区干旱演变 规律,采用 P-III 型分布作为 SPEI 的边缘分布,利 用 Clayton Copula 函数构建水源区和受水区汛期、 非汛期和全年 SPEI 的联合分布,定量评估了引江 济淮工程水源区和受水区历史和未来的干旱遭遇 风险,主要结论如下:

SPEI 能够较好地适用于区域干旱情况的识别, 水源区和受水区在 1966年、1978年、2001年和 2011年发生了严重干旱。1960—2020年水源区和 受水区发生干旱的频率分别为 27.32%和 29.78%。 在未来不同气候情景下汛期和全年 SPEI 呈现显著 的下降趋势,而非汛期 SPEI 则表现出增加的趋势。 在未来情景下两个区域干旱发生频率均有明显增 加,尤其高排放情景下特旱发生频率增加超过 10%。

基于 Clayton Copula 函数建立的水源区和受水 区 SPEI 的联合分布能够较好地模拟实际旱情及其 遭遇情况。非汛期水源区和受水区同时发生干旱 的概率相对较高,比汛期高 5.49%。未来汛期和全 年干旱遭遇频率预计有明显增加(10%~40%),非汛 期干旱遭遇频率略有降低(平均约 5.38%)。在中高 排放情景(SSP2-4.5 和 SSP5-8.5)下,远期干旱遭遇 频率相对更高,表明未来干旱遭遇频率是增加的 趋势。 气候模式结果显示未来近期干旱遭遇风险预计 增加,这给调水工程效益发挥带来了巨大挑战,未 来应加强节约用水管理和制定应急抗旱预案,加强 调蓄工程建设和供水工程应急调度,加强受水区应 急备用水源地保护和建设,提高水资源调控水平和 供水保障能力,以更好地应对未来可能增强的干旱 遭遇风险。

参考文献:

- [1] 谷丽雅, 侯小虎, 张林若. 浅谈国外跨流域调水工程现状、机遇和挑战[J]. 中国水利, 2021(11): 61-62.
 DOI: 10.3969/j.issn.1000-1123.2021.11.040.
- [2] 田君芮,丁继勇,万雪纯.国内外重大跨流域调水工 程管理模式研究[J].中国水利,2022(6):49-52. DOI: 10.3969/j.issn.1000-1123.2022.06.031.
- [3] 左其亭,杨振龙,路振广,等.引江济淮工程河南受水 区水资源利用效率及其空间自相关性[J].南水北调 与水利科技(中英文), 2023, 21(1): 39-47,75. DOI: 10.13476/j.cnki.nsbdqk.2023.0005.
- [4] 陶洁, 王沛霖, 王辉, 等. 基于A-NSGA-Ⅲ算法的引江 济淮工程河南段水资源优化配置研究[J/OL]. 水利 水电科技进展: 1-13[2023-09-25]. http://kns.cnki.net/ kcms/detail/32.1439.TV.20230403.1038.002.html.
- [5] 韵和. 引江济淮工程 铸国之重器 惠江淮人民[J]. 中国水利, 2022(19): 94-95.
- [6] 祝东亮.引江济淮工程调水对受水区水资源影响分析[J].治淮,2019(7):9-10.DOI: 10.3969/j.issn.1001-9243.2019.07.007.
- [7] 张强,谢五三,陈鲜艳,等. 1961—2019年长江中下游 区域性干旱过程及其变化[J]. 气象学报, 2021, 79(4): 570-581. DOI: 10.11676/qxxb2021.035.
- [8] 方国华,涂玉虹,闻昕,等. 1961—2015年淮河流域气象干旱发展过程和演变特征研究[J].水利学报,

生态与环境 •1003 •

2019, 50(5): 598-611. DOI: 10.13243/j.enki.slxb. 20180986.

- [9] 何静, 吕爱锋, 张文翔. 气候变化背景下滇中引水工 程水源区与受水区降水丰枯遭遇分析[J]. 南水北调 与水利科技(中英文), 2022, 20(6): 1097-1108. DOI: 10.13476/j.cnki.nsbdqk.2022.0108.
- [10] 石卫, 雷静, 李书飞, 等. 南水北调中线水源区与海 河受水区丰枯遭遇研究[J]. 人民长江, 2019, 50(6): 82-87. DOI: 10.16232/j.cnki.1001-4179.2019.06.016.
- [11] 王伟, 钟永华, 雷晓辉, 等. 引汉济渭工程水源区与 受水区丰枯遭遇分析[J]. 南水北调与水利科技, 2012,10(5):23-26,36.DOI:10.3969/j.issn.1672-1683. 2012.05.005.
- [12] 马盼盼, 白涛, 武连洲, 等. 汉江干支流径流丰枯遭 遇对跨流域调水的影响[J]. 水利水电技术, 2017, 48(8): 13-17, 106. DOI: 10.13928/j.cnki.wrahe.2017. 08.003.
- [13] 张璐, 卢一杰, 张增信, 等. 南水北调中线水源区和 受水区干旱遭遇风险评估[J]. 南水北调与水利科 技(中英文), 2022, 20(6): 1148-1157. DOI: 10.13476/ j.cnki.nsbdqk.2022.0113.
- [14] 余江游,夏军,佘敦先,等.南水北调中线工程水源
 区与海河受水区干旱遭遇研究[J].南水北调与水
 利科技,2018,16(1):63-68,194.DOI: 10.13476/j.
 cnki.nsbdqk.20180010.
- [15] LIU X, LUO Y, YANG T et al. Investigation of the probability of concurrent drought events between the water source and destination regions of China's water diversion project[J]. Geophysical Research Letters, 2015, 42(20): 8424-8431. DOI: 10.1002/2015GL 065904.
- [16] 方思达,刘敏,任永建.南水北调中线工程水源区和 受水区旱涝特征及风险预估[J].水土保持通报, 2018,38(6):263-267,276.DOI:10.13961/j.cnki.stbctb. 2018.06.040.
- [17] 康玲,何小聪.南水北调中线降水丰枯遭遇风险分析[J].水科学进展,2011,22(1):44-50.DOI:10. 14042/j.cnki.32.1309.2011.01.004.

- [18] 高月娇,黄生志,聂明秋,等.引汉济渭工程水源区 与受水区的丰枯遭遇及动态变化[J].自然灾害学 报,2022,31(6):162-173.DOI: 10.13577/j.jnd.2022. 0617.
- [19] 陈睿智, 桑燕芳, 王中根, 等. 丰枯遭遇对引汉济渭 受水区水资源配置的影响研究[J]. 资源科学, 2013, 35(8): 1577-1583.
- [20] 丁志宏, 冯平, 张永. 基于Copula模型的丰枯频率分析: 以南水北调西线工程调水区径流与黄河上游来水的丰枯遭遇研究为例[J]. 长江流域资源与环境, 2010, 19(7): 759-764.
- [21] PENG S, DING Y, LIU W, et al. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017[J]. Earth System Science Data, 2019, 11(4): 1931-1946. DOI: 10.5194/essd-11-1931-2019.
- [22] 周天军,陈梓明,陈晓龙. IPCC AR6报告解读:未来的全球气候:基于情景的预估和近期信息[J]. 气候变化研究进展,2021,17(6):652-663. DOI: 10.12006/j.issn.1673-1719.2021.239.
- [23] SONG Z, XIA J, SHE D, et al. Assessment of meteorological drought change in the 21st century based on CMIP6 multi-model ensemble projections over Chinese mainland [J]. Journal of Hydrology, 2021, 601: 1 26643. DOI: 10.1016/j.jhydrol.2021.126643.
- [24] VICENTE-SERRANO S M, BEGUERÍA S, LÓPEZ-MORENO J I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index [J]. Journal of Climate, 2010, 23(7): 1696-1718. DOI: 10.1175/2009JCLI2909.1.
- [25] 中华人民共和国质量监督检验检测局,中国国家标准化管理委员会. 气象干旱等级 GB/T 20481—2017
 [S]. 北京: 中国标准出版社, 2017.
- [26] 刘建刚. 2011年长江中下游干旱与历史干旱对比分析[J]. 中国防汛抗旱, 2017, 27(4): 46-50. DOI: 10. 16867/j.cnki.cfdm.2017.04.009.
- [27] 夏军,陈进,佘敦先. 2022年长江流域极端干旱事件 及其影响与对策[J].水利学报, 2022, 53(10): 1143-1153. DOI: 10.13243/j.cnki.slxb.20220730.

The risk of concurrent drought between the water source and destination regions of Yangtze-to-Huaihe River Water Diversion Project

SONG Zhihong¹, WANG Hui², JING Huan¹, WEI Lingwei², JIANG Shengjin², WANG Yongqiang¹, WANG Dong¹

(1. Changjiang River Scientific Research Institute of Changjiang Water Resources Commission, Wuhan 430010, China;

2. Henan Water Diversion Engineering Co., Ltd, Zhengzhou 450003, China)

Abstract: The inter-basin water diversion projects transfer the water resources from basins with abundant water to that with scarce water, which aims to address the problem of uneven spatial and temporal distribution of water resources. The Yangtze-to-Huaihe River Water Diversion Project is a major strategic water resource allocation

project across Yangtze River and Huaihe River basins. The middle and lower reaches of the Yangtze River and the Huaihe River basin are located in the eastern monsoon region of China. The drought disasters occur frequently in these regions with the influence of monsoon climate. Due to the temporal fluctuation and spatial variability of regional water supply, the water source and the water destination regions of the project are prone to the risk of concurrent droughts. The simultaneous occurrence of drought events across the water source and the water destination regions or other conditions that are not conducive to water transfer would have a significant impact on the normal scheduling operation and efficiency of the project. In addition, with the effects of climate change and human activities, the global water cycle will be further intensified. Compound extreme events such as drought, high temperature and heat waves on a global scale will be increasing, which have a serious impact on regional water resources management, ecosystem and sustainable socio-economic development. Therefore, it is of great significance to explore the risk of concurrent drought in the water source and the water destination regions of the project scheduling and sustainable utilization of water resources.

The risk of concurrent drought probability between the water source and destination regions of Yangtze-to-Huaihe River Water Diversion Project was investigated. The meteorological observation and the Coupled Model Intercomparison Project Phase 6 (CMIP6) climate model dataset of precipitation were integrated for both historical and future assessment. Precipitation from nine CMIP6 dataset with three scenarios was first bias-corrected using a quantile mapping approach. The Standardized Precipitation Evapotranspiration Index (SPEI) with a time scale of 6 and 12 months was calculated by monthly precipitation and temperature to describe drought condition. The appropriate marginal distribution was selected to fit the SPEI sequence. The Copula theory was then applied to construct the joint distribution of drought index in the water source and destination regions. The drought evolution patterns and drought encounter risks from 1960 to 2020 were evaluated. And further analysis of the future changes in drought encounter risks under different scenarios based on CMIP6 data was carried out.

The results showed that the frequency of drought occurrence in the water source and destination regions from 1960 to 2020 was 27.32% and 29.78% respectively. In the future scenarios, there would be a significant increase in the frequency of drought occurrence in both regions, especially in the high emission scenario where the frequency of severe drought occurrence increases by more than 10%. The probability of simultaneous drought occurrence in the non-flood season of the water source and destination regions was 5.49% higher compared to the flood season. The frequency of drought encounters during the flood season and throughout the year was expected to significantly increase, while the frequency of non-flood season drought encounters was slightly reduced. In the medium to high emission scenarios (SSP2-4.5 and SSP5-8.5), the frequency of long-term drought encounters was relatively higher.

The SPEI could well capture the regional drought conditions in both the water source and destination regions. The joint distribution of SPEI by the Clayton Copula function was capable to characterize the concurrent drought between the water source and destination regions. The probability of concurrent drought in the two regions during the non-flood season was relatively higher than that in the flood season. In the future scenarios, there would be a significant increase in the frequency of drought occurrence in both regions. And the frequency of drought encounters was also projected to increase in the future. Therefore, it is urgent to formulate adaptive strategies to ensure the normal operation management of water transfer projects and the sustainable utilization of water resources.

Key words: Yangtze-to-Huaihe River Water Diversion Project; concurrent drought; Copula theory; drought index; climate change