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Numerical simulation and improvement of flow pattern of
water intake pumping station in water source area

SHI Wei"?*,CHENG Li?

(1. The Eastern Route of South-to-North Water Diversion Project Jiangsu Water Source Co,Ltd, Nanjing 210019, China;
2. School of hydraulic Science & Engineering, Yangzhou University, Yangzhou 225009, China;
3. Jiangsu Engineering and Technology Center for Pumping Station, Nanjing 210019, China)

Abstract: In order to solve the problems of turbulent flow pattern in pre-sedimentation tank of intake pumping station, large area
of reflux zone and vortices in aeration tank and forebay. Based on the finite volume method of three-dimensional incompressible
fluid and standard k-¢ turbulence model, the numerical simulation of pre-sedimentation tank, aeration tank and forebay of an in-
take pumping station was carried out by using ANSYS CFX software. The aeration tank and forebay are numerically simulated,
and the flow pattern, velocity and pressure contour of the selected cross-section of the intake pumping station are analyzed. The
pumping station is optimized by setting fillets at the corridor corner of the aeration tank, U-shaped diversion wall and quarter
arc diversion wall in the corridor corner of the original scheme. Splayed diversion piers are set in the forebay and diversion piers
are set between pump units. Compared with the original scheme, the phenomenon of flow separation and reflux in the corridor
corner of the original scheme has been improved. The large-scale reflux area in the aeration tank and the forebay disappears,and
there is no obvious bad flow pattern in the overall flow of pumping station. The research results have certain guiding significance
for optimizing the internal water flow, preventing sediment sedimentation, and improving the stability, efficiency and safety of
pumping stations.

Key words: intake pumping station; pre-sedimentation tank; aeration tank; forebay; flow pattern; numerical simulation

The total amount of water resources in China water transfer projects. The pre-sedimentation

is deficient and the distribution of water resources
is uneven. In order to effectively solve the water
shortage and other problems,it is very urgent and

necessary to scientifically dispatch and optimize the
1-3]

operation of inter-basin water transfer project*
With the continuous acceleration of China's mod-
ernization, the development of water transfer pro-
ject is also very rapid. In recent years, domestic ex-
perts and scholars have conducted extensive re-

search on issues such as hydraulic optimization in
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tank,aeration tank and forebay are the main struc-
tures of the water intake pump station in the water
transfer project. The role of the pre sedimentation
tank is mainly to remove the sinkable and floating
objects in the water. If the water flow in the pre-
sedimentation tank is turbulent,it will not be con-
ducive to sedimentation,and it may also cause sedi-
mentation in the aeration tank and the forebay'*®.
Wei et al' used the gas-liquid two-phase flow

model to simulate the 3D hydraulic characteristics
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of a secondary sedimentation tank. The results in-
dicated that the model can well simulate the distri-
bution of hydraulic characteristics in a secondary
sedimentation tank. Bai et al'™ carried out numeri-
cal simulation and optimization of flow pattern in
sedimentation tank. Based on the standard k-e tur-
bulence model, Liu et al®® simulated the flow pat-
tern and the concentration distribution of solid par-
ticles in the sedimentation tank under different in-
flow conditions. Based on the 3D two-phase flow
model, Wang et al' simulated the flow fields in
rectangular sedimentation tanks by the computa-
tional fluid dynamics software STAR-CD. The in-
terfacial forces as well as the volume fraction of
suspended solids and density between suspended
solids and liquid were considered in modeling. Su et
al"'* discussed and analyzed the sludge settlement
velocity, the rheological properties of mixed liquid,
the external wind field and the secondary settling
tank structure and other factors affecting the accu-
rate simulation of the two-phase flow dynamics af-
fecting the accurate simulation of the two-phase
flow dynamics.

The aeration tank mainly uses the activated
sludge process for sewage treatment. Due to the
long corridor of the aeration tank, obvious aera-
tion and large-area dead water phenomenon are
likely to occur in the aeration tank, which ad-
versely affects the overall flow pattern of the in-
take pumping station"'''?/, Cheng''*! conducted
an experimental study on the flow law of gas-lig-
uid two-phase flow in the aeration tank, and
measured the vertical velocity of the liquid phase
in the aeration tank. Wang!'*' carried a PIV ex-
perimental study of gas-liquid two-phase flow on
a cylindrical experimental device, and the gas ve-
locity vector fields were obtained accurately by
image processing and particle image velocimetry
technology.

In most cases,diffusion inflow mode is used in
forebay to ensure smooth diffusion of water flow.
Due to the short length of the diffusion section in
the forebay, the water flow is difficult to be fully

diffused,and it is easy to form a large area of reflux

e 168 « KA TAEH R

area in the forebay, which affects the safe operation
of the pumping system. In order to study the bad
flow pattern in the forebay, Luo et al" simulated
the flow pattern in the forebay without any meas-
ures and with bottom sill rectification measures
based on the N-S equation. Gao et al"'*'") studied
the flow pattern in the forebay through experi-
ments, and the results showed that the flow pat-
tern in the forebay was improved after setting the
measures such as the trajectory bucket piers and
pressure plates.

With the development of the inter-basin water
transfer project,it is very urgent to study the im-
provement of the flow pattern in the pre-sedimen-
tation aeration tank and forebay of the intake pum-
ping station. Hence, based on CFD (computational
fluid dynamics) technology, ANSYS 14. 5 software
was used to carry out numerical simulation of the
pre settling aeration tank and forebay of a new wa-
ter source pumping station in a city. and the stand-
ard k-e turbulence model is selected for the turbu-
lence model. By comparing the internal flow char-
acteristics of the improved schemes and original
scheme under different flow rate and water level
conditions, the improvement of the flow pattern of
the original scheme by the optimization measures

was analyzed.
1 Project Overview

The pumping station studied in this paper is
the intake pumping station in a new water source
area of a city. There are 10 pumps in the pumping
house, which can be flexibly matched according to
various working conditions. Of the 10 pumps,7 are
high head pumps and 3 are low head pumps. The
design flow rate of single high head pump is 2. 875
m?®/s, and the design head is 58.5 m. The design
flow rate of single low head pump is 2. 551 m?/s,
and the design head is 29. 0 m.

Under the condition of large flow rate, the
flow rate of intake pumping station is 13. 31 m®/s
and the head is 58.5 m. Under the condition of
small flow rate, the flow rate of intake pumping

station is 7. 80 m®/s and the head is 40.5 m. The
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design high water level of the pump station is 6. 8
m, the design normal water level is 3.9 m and the

design low water level is 2.4 m.
2 Numerical Simulation

2.1 Control equations and Turbulence Mode' >’

Reynolds-averaged N-S equation and continui-
ty equation were selected to describe the 3D incom-
pressible viscous flow in the intake pumping sta-

tion. At the same time,the standard k-¢ turbulence

1w 1 Ininke jiar sl 'edissieil sl

Ii 1 Pie=plimpriaiinn iank i

model was selected for calculation.
2.2 Mesh generation

The Mesh in ANSYS 14.5 software was
used to generate grids of pre-sedimentation
tank, aeration tank and forebay in the intake
pumping station separately. As shown in Fig. 1,
the intake pumping station was divided into nine
parts for grid generation. The grids of whole
computational domain are mainly composed of

hexahedral grids.

Blajie anptinii

L v Uiiled e

Fig. 1 Mesh of the computation domin

2.3 Mesh independence

It is very important for the accuracy of numer-
ical simulation to select the quantity and quality of
the grid. Hence, in order to verify the reasonable-
ness of the mesh generation, the grid independence
of the intake pumping station was carried out. In
the range of 400 000 to 2 400 000 grid numbers, 9
groups of grid numbers were selected for grid inde-
pendence analysis to determine the appropriate grid
numbers. As shown in Fig. 2,section 1-1 (pumping
station inlet) and section 2-2 (pumping station out-
let) were selected as the pressure measuring sec-

tion for hydraulic loss calculation.

Fig. 2 Computation domin

Fig. 3 shows the change of hydraulic loss un-
der different grid numbers of intake pumping sta-

tion. As shown in the figure, with the increase of

the number of grids, the hydraulic loss increases
gradually. When the number of grids is more than
1. 5 million, the hydraulic loss tends to be stable
without obvious change. Theoretically, the accura-
cy of the calculation results depends on the number
of grids, but too many grids will consume a lot of
calculation time, resulting in a waste of computer
resources. Finally, the grid number of the entire
computational domain is 1.756 million, and the

number of nodes is 1. 726 million.
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Fig. 3 Hydraulic loss under different grid numbers
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3 Scheme optimization

3.1 Calculation scheme

The water flows into the forebay through the
slope in the form of gate hole inflow. Due to the
fast flow velocity of the water entering the fore-
bay, the main flow area is mainly concentrated in
the middle of the forebay,so the water can not be
evenly diffused into each pump unit in a short peri-
od of time,and at the same time,a large return area
is easily formed on both sides of the forebay,which
is not conducive to the safe and stable operation of
the pump unit. According to the design drawing of
intake pumping station in a new water source area,
a 3D model of pre-sedimentation aeration tank is
established. The original scheme model is shown in
Fig. 4. In view of the problems of flow separation
and dead water area in the pre-sedimentation aera-
tion tank, the fillet is used to optimize the original
flow right angle in the pre-sedimentation aeration
tank,and U-shaped diversion wall and quarter arc
guide wall were added to the corridor. In view of the
problem of flow deviation and backflow in the slope
section, the splayed diversion wall is set in the forebay
of the original scheme, and diversion piers are added
between the pump units, so that the water can enter
the forebay relatively smoothly. The 3D model of the

improved scheme is shown in Fig. 5.
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Fig. 4 Original scheme model
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Fig. 5 Improved scheme model

3.2 Calculation results
In order to analyze the hydraulic characteris-

tics of the intake pumping station under different
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water level and flow rates of different schemes, the
internal flow characteristics of different water in-
take pumping station schemes under two special
working points (small flow Q=7.80 m’/s, large
flow Q=13. 31 m®/s) and three special water lev-
els (design low water level 2.4 m, design constant
water level 3. 9 m, design high water level 6.8 m)
were simulated. The section with a height of 1 m
(=1 m) in the intake pumping station was select-
ed as the analysis section, and the streamline dia-
gram, flow velocity contour and pressure contour
of the intake pumping station were obtained for
comparative analysis,

3.2.1 Streamlines of intake pumping station

As shown in Fig. 6 to 8, by comparing the
streamlines of the original scheme and the im-
proved scheme under different flow rate and water
level conditions,it can be seen that the flow pattern
in the pre-sedimentation tank of the original
scheme is relatively smooth, but there is a reflux
area and disordered flow pattern at the corner of
the corridor,and there is a large area of vortex and
return area on the left side of the forebay. In the
improved scheme, the problem of flow separation
and reflux at the corner of corridor is improved,
and the streamline distribution is more uniform.
Under the condition of low water level, the large
reflux area at the left side of forebay of the im-
proved scheme can be eliminated, and the problem
of poor flow pattern can be alleviated. Under the
condition of constant water level and high water
level, although there are vortices in the forebay of
the improved scheme, the phenomenon of flow sep-
aration and reflux flow in the corridor and slope
section is improved.

When the water level of the intake pumping
station is constant, with the increase of flow rate,
the change of streamlines of the two schemes is
small, so the change of streamlines between the o-
riginal scheme and the improved scheme is less af-
fected by the change of flow rate.

When the flow rate is constant and the water
level rises from low water level to constant and
high water level, the overall flow pattern of the two

schemes changes less than that of the low water level,
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Fig. 6 Streamline diagrams of original and improved schemes under different flow conditions at low water level
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Fig. 8 Streamline diagrams of original and improved schemes under different flow conditions at high water level
and the improved scheme improves the poor flow proved scheme under different flow rate and water
pattern of the original scheme obviously. level conditions,it can be seen that there is a high-
3.2.2 Velocity contour of intake pumping  speed area at the corner of the corridor of the origi-
station in different schemes nal scheme,and the velocity distribution at the cor-
As shown in Fig. 9 to 11, by comparing the ve- ner of the corridor is uneven. At the same time, the
locity contours of the original scheme and the im- velocity distribution in the forebay is not uniform.
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Fig. 10 Velocity contour of original and improved schemes under different flow conditions at constant water level
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In the improved scheme, the overall flow velocity tion at the corner of the corridor is improved. The
distribution is more uniform, there is no obvious overall flow velocity distribution of the improved
velocity fluctuation,and the flow velocity distribu- scheme is relatively uniform. There is no obvious
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velocity fluctuation in the improved scheme, and
the uneven velocity distribution at the corner of the
corridor is improved.

When the water level of the intake pumping
station is constant, with the increase of flow rate,
the overall velocity of the original scheme and the
improved scheme increases gradually, but the varia-
tion law is similar. The change of velocity between
the original scheme and the improved scheme is
less affected by the flow.

When the flow rate is constant and the water
level rises from low water level to constant and
high water level,according to the velocity contour,

the velocity of the two schemes of constant water
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level and high water level is smaller than that of
low water level,and the velocity distribution is ba-
sically unchanged. The improved scheme is benefi-
cial to the uniform distribution of the overall veloc-
ity of the water intake pump station.
3.2.3 Pressure contour of intake pumping
station in different schemes

As shown in Fig. 12 to 14, by comparing the
pressure contours of the original scheme and the
improved scheme under different flow rate and wa-
ter level conditions, it can be seen that the pressure
at the corner of the corridor of the improved
scheme is smaller and the pressure distribution is
more uniform than that of the original scheme.
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Fig. 12 Pressure contour of original and improved schemes under different flow conditions at low water level
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When the water level of the intake pumping
station is constant, with the increase of flow rate,
the overall pressure in the original scheme and the
improved scheme increases gradually, but the
change rule is similar. The change of pressure dis-
tribution between the original scheme and the im-
proved scheme is less affected by the flow.

When the flow rate is constant and the water level
rises from low water level to constant and high water
level, compared with the low water level, the overall
pressure value of the improved scheme and the original

scheme is reduced under the condition of high water
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level and constant water level, but the pressure distri-

bution is roughly the same, and the uniformity of the
pressure distribution of the improved scheme is better
than the original scheme.
3.3 Axial velocity distribution

In order to quantitatively analyze and compare the
difference of water absorption uniformity between the
original scheme and the improved scheme under the
condition of large flow rate and small flow rate, the ax-
ial velocity distribution coefficient at the inlet section of
the bell pipe of five pump units (Fig. 15) was com-

pared and analyzed.

Fell rramthy inlei

Fig. 15 Flow velocity uniformity of each inlet section of horn tube under different flow conditions

The formula for the axial velocity distribution

coefficient V, is as follows:

V= {1_1 33 Cuy—u)?
u, m

u, is the averaged axial velocity of the calcu-

X100%

lated section(m/s) ; u,is the axial velocity of each
element of the calculated section (m/s);m is the
number of cells of the calculated section.

Fig. 16 shows the axial velocity distribution coef-
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ficient of each inlet section of the bell pipe under two
flow rate conditions. The results show that under the
condition of large flow rate and small flow rate, the u-
niformity of water absorption of each pump in the fore-
bay without improvement measures is quite different,
and the uniformity of water absorption of the pumps
on both sides is poor. After the improvement measures
are added, the axial velocity distribution coefficients of

5 pump units under two flow rate conditions are signif-
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icantly improved, and the maximum increase range of
the flow uniformity at the inlet section of the bell pipe
is 3. 6% ,and the difference of the maximum flow uni-

formity at the inlet section of the bell pipe of each
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pump unit is reduced to within 1. 8%, but the water
absorption uniformity of the pump units near the fore-

bay is worse than that of the middle units.
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Fig. 16  Flow velocity uniformity of each inlet section of horn tube under different flow conditions

4 Conclusion

(1) Based on the original scheme, the following
improvement measures are added to the improved
scheme of intake pumping station: Fillets are set at the
corner of the corridor of the aeration tank, U-shaped
diversion wall and quarter arc-shaped diversion wall are
set at the corner of the corridor, splayed diversion piers
are set in the forebay and partition piers are set be-
tween the pump units. In the original scheme, the flow
pattern in the sedimentation tank is relatively smooth,
but there is reflux at the corner of the corridor,and the
flow pattern is relatively disordered. In the original
scheme, there was a large area of vortex and reflux area
on the left side of the forebay. In the improved scheme,
the flow separation and reflux at the corner of the cor-
ridor are improved, the streamline distribution is more
uniform, and the uniformity of flow velocity at each in-
let section of the bell pipe is greatly improved, Espe-
cially under the condition of low water level, the
large reflux area on the left side of forebay can be
eliminated, and there is no obvious adverse flow
pattern in the forebay.

(2) When there is no improved measure in the
forebay of the intake pumping station, the back wall
will be impacted by the jet flow after the inlet of the
slope gate hole, which is easy to form a large area of
reflux area on both sides. A large area of reflux on the

surface under the condition of low water level is well

controlled by setting a splayed diversion pier at the
middle line of two sluice holes in the forebay and a
partition pier between pump units.

(3) When the water level of the intake pum-
ping station is constant, with the increase of flow
rate, the flow pattern of the pre-sedimentation tank
changes little, and the overall flow rate and pres-
sure gradually increase, but the change rule is simi-
lar. When the flow rate is constant and the water
level rises, the overall water flow pattern under
high water level and constant water level condi-
tions changes less than that under low water level
condition. Obviously, the water suction uniformity
of the water pump is significantly improved. In the
improved scheme, the improvement measures are
obvious to improve the poor flow pattern existing
in the original scheme,and the uniformity of water

absorption of the pump is significantly improved.
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