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Projection of future precipitation changes in upper

Jinghe River basin using multiple models

LOU Wei, LI Zhijia, LIU Yuhuan

(College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China)

Abstract: The prediction of precipitation changes in the future can provide a basis for research on water resource changes in the
upper Jinghe River basin. The GCMs are ranked according to the site measured data and monthly GCMs data. The statistical
downscaling model SDSM is constructed based on daily data of 6 GCM models selected from 21 GCMs, the climate models integrated
by 6 GCMs, in situ stations data,and NCEP reanalysis data, to predict the future precipitation change in the upper reaches of Jinghe Riv-
er. The results show that the SDSM is reliable for precipitation simulation. The R? of each model is between 0. 228 and 0. 324 , the
standard error is between 0. 354 and 0. 450, respectively. The simulated monthly average precipitation in the periodic and verifi-
cation periods is similar to the measured value and the distribution is similar within a year. The integrated model performs best
in the downscaling performance evaluation period. Under the RCP 4. 5 scenario, most future precipitation models and integrated

models in the upper Jinghe River show an increasing trend. By the 2030s, precipitation in the upper Jinghe River may increase by

4. 8% ,and local rainfall in spring also exhibits an increasing trend,and summer rainfall may decrease.

Key words: climate change; precipitation; rank score evaluation; SDSM; upper Jinghe River basin

Jinghe River, the secondary tributary and one
of the top ten river systems of the Yellow River,
has an average annual precipitation of 350-600 mm
and belongs to the semi-humid and semi-arid tran-
sition region'!). The Sanguankou watershed of the
upper reaches of the Jinghe River is located in the
Ningnan Mountains in the west of the Loess Plat-
eau. Due to the impact of climate change, local soil
erosion and water shortage are becoming increas-
ingly prominent, which has become the bottleneck
hindering the local economic development. There-
fore, it is of great necessity to qualitatively and
quantitatively study the impact of future climate

change on water resources in the upper Jinghe Riv-
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er region.

At present,a common way to study the future
climate change of a region is to use the output data
of global climate models (GCMs) combined with
different downscaling methods to predict the future
climate change scenarios of a region. GCM can bet-
ter simulate the most important average character-
istics of large-scale climate information, so this
method has been widely used in the research on the
impact of climate change on hydrology and water
resources'””. The downscaling methods can be di-
vided into three categories: statistical downscaling
model(SDSM) , dynamic downscaling.and the com-

bination of statistical downscaling and dynamic
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downscaling. Each method has its own advantages
and disadvantages. For example, SDSM has the ad-
vantages including small calculation amount and
easy construction of the model, without considering
the impact of boundary conditions on the prediction
results, which has been favored in climate change
studies'**, Scholars have made great achievements
in the prediction of temperature and precipitation
by using GCM combined with SDSM. For example:
Hasan et al. " utilized SDSM combined with GCM
to predict the maximum temperature, minimum
temperature,and precipitation in Brunei from 2017
to 2076, finding that the maximum temperature
showed an increasing trend while the minimum
temperature and precipitation exhibited a decrea-
sing trend. Huang et al. "'Yand Liu et al. " predic-
ted the future precipitation in the Yangtze River
basin and the middle and lower reaches of the Yan-
gtze River respectively via SDSM, and the results
showed that most areas in the Yangtze River basin
would be dominated by an upward trend. Chen et
al. "*Jestimated the precipitation in spring in cen-
tral Asia based on the multi-model set of statistical
downscaling, finding that the multi-model set was
superior to most of the single-model downscaling
results.

In this paper, a rank score method based on
multi-objective function is adopted to evaluate the
monthly precipitation output data of 21 GCMs pro-
vided by CMIP5, and 6 GCMs are selected. SDSM
model is driven by 6 kinds of GCM daily precipita-
tion data to generate the future climate change sce-
nario of the upper Jinghe River basin, which cannot
only solve the adaptability problem of different
GCM regions and reduce the uncertainty of single
GCM simulation, but also provide the climate
change range in multiple models and multi-model
set,so as to provide the basis for local governments
to work out more effective water use plans and bet-

ter tap the potential of water resources.
1 Research method

1.1 Overview of the research area
The upstream basin of Jinghe River in this pa-

per refers to the controlled basin above the San-

guankou hydrological station located in the east
side of Liupan Mountain within Jingyuan county,
Ningxia province. There are Dawan, Wating, Shizi
and other precipitation stations in the basin, and
Guyuan weather station with rich historical mete-
orological data is set near the basin. The basin cov-
ers an area of 218 km?,and the precipitation mainly
concentrates from June to September-'"’. The basin
is located at the eastern foot of Liupan Mountain,
with an altitude of from 1,640 m to 2,930 m. It be-
longs to the rocky and forest region, which is af-
fected by the southeast monsoon in summer and
controlled by the Mongolian high pressure in win-
ter with significant continental monsoon climate

and alpine mountain climate characteristics.
1.2 Data resources

This study requires three types of data: precip-
itation data measured at the station, the U S Na-
tional = Centers for Environmental Prediction
(NCEP) reanalysis data,and output data of current
and future climatic conditions simulated by GCM.
The precipitation data measured at the station can
be obtained by reference to relevant hydrological
yearbooks, and the daily precipitation data of
Dawan, Wating, Shizi, and Sanguankou in the up-
stream of Jinghe River basin from 1991 to 2014 can
be obtained. The monthly precipitation data of
Guyuan station near the river basin from 1970 to
2005 are obtained from website of China meteoro-
logical data(http://data. cma. cn/) for the evalua-
tion of GCMs to select 6 GCMs closer to the local
location. Among them, the data accuracy of precipi-
tation data obtained from hydrological yearbook
and http://data. cma. cn/ is 0. 1 mm, so they are
put together for use. NCEP reanalysis data are
jointly provided by the NCEP and the National
Center for Atmospheric Research (NCAR). The
time selected period coincides with the measured
data(from 1991 to 2014), including the meteoro-
logical data such as precipitation, average surface
temperature, specific humidity, relative humidity, u
and v components of wind speed. GCM data are
downloaded from CMIP5 Chttps://esgf-node. llnl.
gov/projects/cmip5/). Compared with the previous

models, CMIP5 adopts a more reasonable parame-
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terization, flux treatment scheme, and the coupler
technology to get more accurate and detailed da-

115:16] " The monthly precipitation outputs from

ta
1970 to 2005 of 21 GCM models in the RCP 4. 5
scenario and the daily scale data from 1991 to 2030
of the selected 6 GCM models in the RCP 4. 5 scenario
are downloaded. The scenario of RCP 4.5 adopted in
this paper is that the radiation is forced to stabilize at
4.5 W/m?* around the year of 2100,and the greenhouse
gas emissions need to be limited through the change of
energy system and the application of carbon capture
technology, which is more in line with China’s poli-

cies and measures to deal with climate change and

future development vision.
1.3 GCMs model evaluation method

In this paper, an evaluation system proposed
by Fu Guobin et al. '™ is adopted. In this system,
all evaluation indexes in Tab. 1 are calculated by
comparing the data of each GCM to the station and
the measured values in the same period through bi-
linear interpolation. Then, a rank score between 0

and 9 is adopted to score each individual evaluation

index"®,as shown in Eq. (1)
R_\-,‘ — Li ™ Tin ><9
‘max  Lmin ( 1 )
Rs = Zw; R.\'i

where:x; is the numerical value of the ith evalua-
tion index;w; is the weight of the ith evaluation in-
dex in the rank score; R, is the final score,the low-
er the score is, the better the simulation effect of
the GCMs on precipitation is.

Tab.1 GCMs evaluation indicators and weights

Evaluation indexes Calculation methods Weights
Mean value Relative error 1.0
Standard deviation Relative error 1.0

. . Normalized root-mean-
Time difference 1.0
square error

Annual distribution Correlation coefficient 1.0
Trends and their Mann-Kendall test 0.5
variations Sen's slope estimate 0.5
Probability density Brier score (Bscore) 0.

o

function(PDF)

=

Significance score(Sgeore)

Each evaluation index of the GCM should be

calculated separately, including mean value, stand-

+ 10« KXKFR

ard deviation, M-K trend statistics, definition of
Sen's slope and calculation formula to calculate the
score of GCM, see References [19-21] for details.
By reflects the mean square error between the
probability density function of the simulated value

and the measured value?%!

,which can be calculat-
ed by Eq. (2). A lower value means a better result.
Seore calculates the minimum cumulative probability
of the distribution of measured data and simulated
data in each equipartition sequence value, which re-
flects the overlap between the probability density
function of simulated value and measured valuet*",
and its calculation formula is shown in Eq. (3)

Bscorv:li(Pmi_Po[)z (2)

ni=1

Sue = 2 Min(P,; . P, (3)
where: P,; and P, are the probability density val-
ues of simulated value and measured value 7 respec-
tively;n is the total number of shares divided(n=
100).

Based on the evaluation results of each model,
the models are ranked. The top six climate models
are selected and the weights are calculated accord-
ing to Eq. (4) to construct an integrated climate
model so as to reduce the uncertainty of scenarios

and parameters of different models

i=

Wk /(SR

1R,= (2/S)H/V/S;
where: N is the number of models;S; is the score of
the ith model; W, is the weight of the ith model.
1.4 Statistical downscaling model

SDSM mainly includes two aspects: one is to
establish the statistical relationship between the
forecast quantity ( meteorological elements of the
site) and the forecast factor (atmospheric circula-
tion factor) ,so as to determine the model; the oth-
er is that according to the determined model, the
future scenario data of the site climate elements can
be generated with GCM data®'. This model is
widely used in the study of meteorology, hydrolo-
gy.and other fields in America, Europe and Asia,

[26-28]

and its basic principle is as follows

w;, = +,Zl:1aj P; ;RYZ = —|—]Zl:lﬁj P;+e (5
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T=7,+ 3, Py +e, (6)
where: P;; is the j th predictor on day i;w, is the
probability of precipitation occurring on the ith
day;asf@sand y are the parameters of the model; R,
is the precipitation; T; is the temperature variable;

e; s the error.
2 Results and analysis

2.1 CMIPS multi-model assessment of pre-
cipitation simulation capability

Tab. 2 lists the mean value, standard devia-
tion, normalized root-mean-square error, annual
distribution, trend and variation indicators, proba-
bility density function indicators of each GCM and
measured monthly precipitation, as well as the
comprehensive simulation score of each GCM.

The average annual precipitation of Guyuan
station is 436. 37 mm, while the range of simulated
precipitation of GCMs is 377-716 mm, and the
maximum precipitation is about 1.5 times of the
measured value. The mean and median values of
the 21 GCM simulated precipitation are 510. 54 mm
and 495. 25 mm), respectively. Compared with the
standard deviation of the measured value of 85.9
mm, the simulated amplitude of GCM is 48. 9-
101. 66 mm while compared with that of the meas-
ured values, the normalized root-mean-square er-
rors of each GCM range from 0.57 to 1.18. The
normalized root-mean-square error reflects the de-
viation between each GCM and the measured val-
ue. Under the same mean value and standard devia-
tion,a lower GCM value suggests better simulation
performance.

The correlation coefficient between monthly
precipitation and measured values of each GCM is
higher than 0. 95, indicating that each GCM can
well reflect the annual change rule of precipitation.
According to the trend analysis, the measured pre-
cipitation shows a downward trend(Z= —10.8),
with a variation of 1. 01 mm/a. The Z value of each
GCM varies from — 2.33 to 1.56, among which
nine GCMs show a downward trend.

The indicators of the probability density func-
tion in Tab. 2 reflect the fitting of GCM and meas-

ured values in probability, where B, and Sy val-
ues are both percentage values. As can be seen
from Tab. 2, the variation of B... indicators of all
GCM ranges from 0. 01 to 0. 26, and the variation
of S.u. indicators ranges from 76.57 to 88.
CESM1, MMR-CGCM3 and measured values are
the most fitting in the probability distribution,
while Bnu and MPI-ESM-LR are the worst. Ac-
cording to Eq. (1), the comprehensive scores of 21
GCMs on precipitation are calculated. After calcu-
lation, Miroc5 is the one with the best simulation
performance,and MRI-CGCM3 is the one with the
worst simulation performance.

According to the ranking results in Tab. 2, the
top six climate models are selected, namely Mi-
roc5, GFDL-ESM2M, MIROC-ESM,, MIROC-ESM-
CHEM, BNU-ESM, and CanESM2. The precipita-
tion weight of each climate model is calculated by

Eq. (4) to generate the integrated climate model.
2.2 Calibration and validation of SDSM

Based on the measured data of four stations in
Sanguankou watershed of the upstream of Jinghe
River from 1991 to 2014, a SDSM of the forecast
rainfall and the selected forecast factor NCEP is es-
tablished. The period from 1991 to 2005 is selected
as the calibration period,and the period from 2006
to 2014 is selected as the verification period. The
model data are interpolated into the driving model
of each station by bilinear interpolation to generate
simulation values. The area weight of each station
is calculated by Thiessen Polygons method,and the
measured and simulated values of precipitation in
the basin are obtained. The determination coeffi-
cient(R?) and standard error(SE) representing the
fitting effect of regression model are used to evalu-
ate the fitting effect of SDSM in the calibration pe-
riod, showing that R* ranges from 0. 228 to 0. 324
and the SE of each model is from 0. 354 to 0. 450.
SDSM model is also adopted by experts and schol-
ars including Hao et al. ™ and Wei et al. ®"in
many basins in our country, and different areas
have varying simulation results under different
simulations conditions. For example, the precipita-
tion R? simulated by Zhai et al. “"in the Dongjiang

River watershed ranges from 0. 23 to 0.29 while

KxKF R 11 -
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the precipitation R? simulated by Liu et al. ¥ in
the Ganjiang River watershed ranges from 0. 20 to

0. 34. In comparison, the present results in this paper

are better. Since it is mainly related to the complexity
of precipitation change,it achieves the expected effect

of precipitation simulation in general as well.

Tab. 2 Monthly precipitation score table of different GCMs

GOM Mean Stafldérd NRMSE Ar?nuaAl Trends and variations PDF Total Runk
value deviation distribution 7 8 Beore Secore score

Measured value 436. 37 85.90 —0. 80 —1.01

ACCESSL. 3 377.82 82. 57 0. 96 0. 97 —0. 14 —0.41 0. 09 81. 90 27. 94 9
BNU-ESM 396. 73 48. 90 0. 57 0. 97 0. 57 0.58 0. 26 76.76 23.98 5
Bee-csml-1-m 496. 22 56. 77 0. 66 0. 98 1.59 1.52 0. 05 84. 91 28. 68 10
CanESM2 390. 50 61. 50 0.72 0. 97 0. 45 0. 45 0. 15 80. 27 24. 40 6
CCSM4 495. 25 78.02 0.91 0. 96 0.03 0.13 0.02 86. 36 27.26 8
CESM1-CAM5 583. 05 87.13 1. 01 0. 97 —0. 26 —0. 39 0. 01 88. 00 31.65 16
CSIRO-Mk3-6-0 536. 58 61. 80 0.72 0. 98 1.33 1. 47 0.12 80. 85 30. 30 14
CNRM-CM5 702. 98 79. 80 0.93 0. 99 1. 31 1.76 0.13 80. 49 39. 87 20
GFDL-CM3 485. 50 69. 93 0. 81 0. 97 —0. 34 —0. 26 0. 07 83. 50 25.29 7
GFDL-ESM2G 592. 27 72. 31 0. 84 0.97 1. 31 1. 68 0. 16 79. 96 30. 60 15
GFDL-ESM2M 391. 45 57.33 0. 67 0. 98 —2.33 —2.07 0.19 78. 96 19. 60 2
inmem4 507. 22 91. 31 1.06 0. 96 0. 20 0. 17 0.02 86. 50 34.79 19
IPSL-CM5A-LR 492. 08 70. 60 0. 82 0. 98 —0.80 —1.09 0.12 81. 42 29. 49 13
IPSL-CM5A-MR 636. 70 70. 93 0. 83 0. 99 —1.14 —1.73 0. 08 83. 04 29. 39 12
Mirocb 390. 22 64. 91 0.76 0. 95 —0.88 —0. 80 0. 17 79. 55 18. 86 1
MIROC-ESM 449. 11 54. 38 0.63 0. 97 1.05 0. 88 0. 17 76.57 23.00 3
MIROC-ESM-CHEM 392. 82 60. 75 0.71 0. 97 —0.11 —0.14 0. 16 80. 26 23.45 4
MPI-ESM-LR 488. 45 72.26 0. 84 0. 97 0. 26 0.21 0.21 77.43 29. 14 11
MPI-ESM-MR 587.95 83. 31 0. 97 0. 96 1. 56 2.07 0. 05 84. 73 33. 60 17
MRI-CGCM3 716. 82 101. 66 1.18 0. 98 —0.23 —0.54 0.01 87.79 43.19 21
NorESM1-M 611. 66 67. 86 0.79 0. 98 0. 97 1.10 0.10 82. 25 34.23 18

In Fig. 1, the simulated monthly average pre-
cipitations of Sanguankou watershed on the upper
reaches of the Jinghe River during the calibration
and validation periods are well fitted to the meas-
ured values and the Pearson correlation coefficient

reaches 0. 98 and 0. 96 respectively, indicating that
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SDSM has a good applicability in Sanguankou wa-
tershed of the upstream of Jinghe River, and the
downscaling simulation of the precipitation in the
watershed is more reliable, so it is feasible to pre-
dict the future precipitation changes in Sanguankou

watershed of the upstream of Jinghe River.
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Fig. 1 Comparison of measured and simulated precipitation in Sanguankou watershed

Fig. 2 is the box chart which is drawn with the
measured data and the output data of the GCMs
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calculated after the downscaling, based on the cli-

mate evaluation index™ of the Canadian Meteoro-
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logical Research Center,so as to evaluate the simu-
lation performance of the downscaling model in the
study watershed. In the figure, PrcpTot represents the
total annual precipitation; R10 represents the total
number of days with annual daily precipitation==10
mm; SDII represents the ratio of total precipitati-
on to the number of days; R95pTot represents the
total amount of precipitation of >>95th percentile
of daily precipitation. It can be seen from Fig. 2(a)
that,as far as PrcpTot index is concerned, the mean
error of precipitation in each climate model com-
pared with the measured value is within 5% after
downscaling,and Miroc5 is the closest to the meas-
ured value. The inter-annual distribution of annual
precipitation of each climate model varies, and the
integrated model is obtained by the weighted ag-
gregation of each model. The inter-annual differ-
ence is small and close to the mean value. Fig. 2(b)

shows the total number of days with annual daily
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precipitation=10 mm in each climate model, and
thus it can be found that the average value of each
climate model is 13 days,lower than the measured
value of 15 days. It can be seen from the side that
SDSM is not very ideal for extreme precipitation
simulation after downscaling. In Fig. 2(¢) ,it shows
the ratio of total precipitation and number of days
in each climate model,in which the GFDL-ESM2M
is closer to the measured value. Fig. 2 (d) shows
the sum of the precipitation of >>95th percentile of
daily precipitation for each climate model,in which
MIROC- ESM-CHEM is the closest to the meas-
ured value. In conclusion,none of the climate mod-
els is better than other climate models, while the
average value of all indexes of the integrated cli-
mate model is close to the measured value, signa-
ling satisfying performance. Therefore, the adop-
tion of the integrated climate model can effectively

reduce the simulation error.
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Fig. 2 Box chart for each precipitation downscaling evaluation index

2.3 Forecast of future precipitation scenarios
Based on the established SDSM, the selected

six GCM models are used to simulate and generate

the baseline period and future precipitation data of
Sanguankou watershed in the upstream of Jinghe

River. The annual average annual precipitation of
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1991-2014 is taken as the base value to calculate
the annual precipitation anomaly of the base period
(1991-2014) and the future period (2015-2030).
The results are shown in Fig. 3. The black vertical
bar is preceded by the measured values of the base
period, followed by the estimated future annual
precipitation of each GCM. Compared with the base
period, the future precipitations estimated by dif-
ferent climate models have huge differences, and
most GCMs have increased compared with the base
period. MIROC-ESM-CHEM forecast for future
climate shows the greatest increase by 55 mm in
multi-year annual precipitation, while CanESM2 is
reduced by 22 mm, and Miroc5, GFDL-ESM2M,
MiROC-ESM, and BNU-ESM are raised by 20,23,
29,and 46 mm, respectively. As for the integrated
climate model, from 2015 to 2030, the annual pre-
cipitation of the integrated model fluctuates be-
tween positive anomaly and negative anomaly, but
most of them are positive anomaly, with an annual

mean increase of 26 mm(4. 8%4) compared with the

base period and an increase rate of 9 mm/(10 a).
Because of the multi-model set, the precipitation
extreme value is reduced, but it can better reflect
the overall trend.

Fig. 4 shows the annual precipitation distribu-
tion predicted by the six climate models and the in-
tegrated model in the future period. For compari-
son, the annual precipitation distribution in the
base period is also presented. In the future period,
the precipitation from March to June will increase
compared with the base period,and the precipitati-
ons in July and September show the downward
trend, while the precipitation in August sees little
change. Different climate models forecast precipita-
tion with some uncertainty. For example, GFDL-
ESM2M estimates only 78 mm of precipitation in
July, while MIROC ESM-Chem estimates 65 mm of
precipitation in October. As for the integrated cli-
mate model, compared with the base period, the
precipitation in spring increases and the precipitation

in summer decreases.
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Fig. 3 Scenario estimation of precipitation change under multi-model in the watershed
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Fig. 4 Annual precipitation distribution in future period

3 Conclusions
(1) Compared with other climate models, Mi-

c 14« KXKFR

roch, GFDL-ESM2M, MIROC-ESM, MiROC-ESM-
Chem, BNU-ESM, and CanESM2 are more suitable

for the simulation of climate variables in Sanguankou
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watershed of the upper Jinghe River with the
multi-model rank score method.

(2) SDSM achieves good simulation effect in
Sanguankou watershed of the upper Jinghe River.
The R? of each model in the calibration period is
0. 228-0. 324,and the SE is 0. 354-0. 450. The dis-
tributions of measured and simulated values are
close to each other during the calibration and vali-
dation period. Each model has its own advantages
and disadvantages in terms of climate evaluation
indexes, and the integrated model is close to the
measured values in terms of all indexes. In general,
the downscaling results can be considered reliable.

(3) Compared with those during 1991 to
2014, the annual average precipitation of Sanguank-
ou watershed of the upper Jinghe River in each
model increases or decreases, most of which shows
an increasing trend, and the integrated climate
model increased by 26 mm(4.8%) compared with
the historical period. The future precipitation of
Sanguankou watershed of the upper Jinghe River
varies significantly with seasons, showing an in-
crease in spring precipitation and a decrease in
summer precipitation,

In this paper, the uncertainty of GCMs and the
uncertainty of downscaling method in the process
of climate change prediction for watershed precipi-
tation will lead to the uncertainty of final results.
The purpose of this paper is to reduce the uncer-
tainty among climate models to a certain extent on
the premise of maintaining the characteristics of
climate models. However, only one downscaling
method is adopted in this paper. In future studies,
more evaluation indexes can be added and more
downscaling methods can be used for comparison,
so as to comprehensively analyze future climate
change and reduce the uncertainty of simulation re-

sults.
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