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1.1 & A shaT 4 5 50 R

20 tHhAD 60 FAX, RGRE G H)“ SCT” ——
ARG (systems theory, S) « #Hill #( cybernetics, C)
{5 B8 (information theory, ), &7 HEN il 21,
HPR GEORM AR 5 AR TR a2
TFA5 2> QU AT 2 BT, B K2 R 1970 4R,
HAY:# Hino' " i UK /K 2 8% (K alman filter,
KF) $ARRE FHF /KSR ] &, TH 13X —77 [FiF ¢
(5T 1978 4, Wood 25 SGBEHi IR T (4 KF i
S HEAT P M AR R PR IO A . 2=, DL KF 2
W AR S B AL BRI TEH R % 51N
FK TR U b, W53 1 RGN

BT 20 22 70 SEAX HIBT TR AR BRECR
1978 4F L HHFR VP 22 (AGU) AFF T — Ik H br
BRBEARV B2, HE BRI g0 B AK F 20 1B R
TEK 3052 7Ky 2 RK G R b 1 82 D8 Se 12
1980 4F 4 H, EFRACCREE & B A A TR AN
(WMO) XATF T K BrK TR 2 AR ik 2,
ZEUORSCEER 46 Fe # ARiRSCH, A7 5% KF Hig
Rt A 16 Rt o X AR SO L SRk ALk
R T 2 207 A 1 [ B fiz e 0T 78 7K1, B 4
Ambrus'™ 5] N AR TR A Hi%, 76 230 Buda-
pest-Baja iTBLIZH ARMA 5 7Y( 2240 A5 8Y) 1 AT 5
IS, EOA A P R IE RO

TR /KRR S AR TER AT A 5 8 F 3
T 20 A0 80 FAX, HHECT [ A AP L. LI
RIEFARKZ &N LEBAZIE 7 E " B T
— G KRR AR VR 22 BORH 1 O, iR & KA 50
PR P Es R E AT EECRH BlH 8 FB e
1E, DAt SR A T A AR 8] 7 51 43 # 9 2k

il geit 20505, @ALkiR 2 5 R ZZ W H) E 18]
VALY, AT AR A 1R 3R 22 7 41 %6 RO 1) iR 22
FUBEATTRN o TXLECARIE 790 A 5 FIARASE BUA 5 5
25, AT AT A, A fRIE

20 22 80 FFARNHT 5, 3 A SC Tk A AL AT 52
H¥7T H 5, 250 155 RS HE A5 R 380 0 A 2R
B, — b 57K SO R AR R S I A IE 59 T 46 7
DUIFRIEAER o B [F) A R AT R RS R 1ETT
b BRER, BEH RO IR T 7K SO BB TR G 2
HelE Rk 1 BEAT R Bk AN A vk PR AR 4y
V2538 W ABE AR YR 72 AN I [A) A% 4%, TTAE /K SC Tk
th, WRZE EA BRI A FEEORF 1L, X5 280 VAR AR
RBCAHTT, B, AR K TR R 2208 1R 2R A1
Wik o 1984 4, By 7 R IREOET I KF Bk S
WS MK TR Y E AT A 5, S B SR O 7 V7 T4 5
AL IE, X SE IEAE R B — IR 2R
e MG, & BB A A BRSO KF £2R) | #
JiZ MR T %28 /K SRR Y R S I AR 1% 22 4B IE,
1.2 E A8 550 R

20 {22 80 “EAC S, BE A B BELAE A BLAN S bR
R 735K AP T, kAR TR S I A% IE BRI 55 IR B
NI BTAC R, e o — KRR AE & AR IE 27 S ik
L F251 FI A RS 1 37 52 25% PR Tt ABL Y RTA IEASE
BT S0k BN B 9C. B2, BAh Ja Ak B OR R IE
BTN IETT . AWK LR BRI AR 577k, Kk
RTINS — 2 2 ik ZE R IETT i (termt
nal bias correction, T BC); —j& R R ZE R VA
(process bias correction, PBC)

T BC K SE BT 2 A #7518 Tk 2 747 (7id
1) BIIR 22 0L SR Z2AE i B ARSR, e B
ik 3 g 200 BB K AL ) T R 22 ( A0 iR 22) ,
i R 72 AT RIE, DA A2 SE IS 5 BT IR P AR A 1 H
bRe TBC 7 BAME: (1) LR ERNE" %
TR AR (R 22) 5 BT — A B M 2R (R )
R O 30, FEBE A B TR N T AR AT i &
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(R2%) N R, B PTIARERIERHB . (2) K3
R AR TR AR S B AR IR 202 B TR DR A BT
A JBAR, QI KSR Y Tl i S S B i B 2 )
FRIRH SRS IE ALY, 38 0 S I AR NS it &, S B0 A6
BTk E AR IE. (3) %2 H Bl H (autoregres-
sive, AR) &% I gy 2 , VHE TR B S S
B2 AR R, HT BIH T, Mg ZHr Al A
PRIERAERTY, B A B TR A SR T IR E B LE
(4) SUBBEILSE I BZIE VA (FACT B T IE R %
V) 1722 T SR v R AT AL R R
1 FACT [Al7, 8 S Aol o B, 58 Jont 28 3 I
B IE. (5) 2 T /K SCH B R R Z & 1B T7
R YA AR ARG AN S TR 3 22 4
T A AR, DU TR AR BAIAE A (R A T LS, T T
AN R e 1R 7 A8 1E IR 7, 2 T T R 25 AR IE
R DB IE e 4 Figk 45 R (6) KNN #4132 (K-
nearest neighbor, KNN) ®IEE ™ E—Figiit H
BN IHIT5 i, FE T [R1A S AT, ST S IR AR R
BTN 20 A R 25 2 AR A IE R Y, TR 5 24
OB B0 B AR A K AP st s A2, A Sk
BTN, Ay T 221 A TR 22, DA TR IR 220124 g
WEHATRIE. (7) BP(back propagation) fifi £ X
ERITREIE T T L BP SV I B U5t 4 ) 4%
KA A TIR ASEEY [y AE 26 PE, B A ER BR kK Tk 1R 22
AR AL, 2 T 1m1 VA 73 By, F TR R 22 AR R [
VAR TR, R A R T iR 22 Zo B HRT RS R 22, 3k T
E1E PR &, 5o 2 iR ZE BB I E I

PBC A JFUR Soxf K SC Tk & A 7 1l F8 ( 4n f%
R 77 U TE IS ) B AR IR S R S
SERATRERIE, KL )5 FF BT B A 18 A5 3
T TR AR, 8 PR AR AT B 22, LIS EI %
%oz 2 0 B . PBC 77k FEAHE: (1) # 4
B /N . 3 ( recursive least squares, RLS) £ IE
E L DLTRR ZE P R R /N H bR, s A T
B 24, HRMTHAER BB R L. 12
IR B FLob ot SO0, T [ 2 18 s B 1 1) i
e /N eV T T AR A IRl R 3 o B s e
VELA R A 7 6 A e —RIE AT . (2) KF 5
P AT T i e R G I IR BE AL A B
WARZE P 75 22 B/ SRR U, ATt RGEIRAS, T I
I TR — 52 AOBCE LE A, ANTITAZIE R GRS AL &
(AT T 2 L AR R T R 22 55, BASEEL
WA SN AL IE . KF AR F TR A 41t &R 4, 4
Ty 7 SRR B 7 AR 4 3 143 BORT T R e 7
WTAEL 1 & 4, W Al 5 T 3 3& B JE UK (adaptive

e 14+ KXIXKEIR

Kalman filter, AKF) 2}~ 5 & M JEJ% ( semt adaptive
Kalman filter, SAKF) ¥ Ji& K /R 2 JE ¥ (extended
Kalman filter, EKF) « TG K /K 2 JEJ (unscented
Kalman filter, UKF) 24 K /K 2 J€ % ( ensemble
Kalman filter, EnKF) PAR KL (particle filter,
PF) %5 I BoAR BT SR AL TE . (3) T K 8
HFR TSI 53 KB TE 7 ™ . 8 exd K
T 7 S B R A KA B B 2R, 2 2R E AR I 2K
(RVRFAE, 234 S B B W9 AL ZK BT JB 2R (/K1) L iR
P JE S AR 24, B S B R , 3t xS
J5E Tk B AT RS IE. (4) 302 RG0m  ith 2k

[ 65 69]

(dynamic system response curve, DSRC) /71,
BT /N AR A S B A S K TR A ) N
5% 2 181 Bl W B2 R4, AR 20 LR 4, B4
AR R R SR AT S N ARG, 8 N A M AL
IEf AR Z2, FHA RS IR B fan A\ 25587 #EAT K Tl el
THEAF BRI JE R o 1 /M NS 5] DU AR
FHR A TR B R R R RS K E B E HK B
SEREL R BAVREZ R . X T DSRC Jiikft
Sehs N s B IR %" LA, AR A2 4K
SRR i e T o R th A AR ST ST R
T DSRC BER H4 i FEER 5 12 IE 50, TR I 0 i A
1R 22 R RAR 2 AT I AR IE

49%, TBC 1 PBC IX 5 2 k7K T4 S I 4% 1E
TG BRI FIH), A L SL N AL IERCAR BE AT A
FRAZIE #8172, ] DAF SRR IR 2 4R 22, e
(1) RLS 3% A PR SIS A I J7 VAR A IE AR Al 1
SR (2) ZRHE B IE T AR S T S %
BE, WM 710 IR =B TR 5, BT B1E
Tid B 1R] R AL BT S L 2 g RS B
TP (3) DU T OB I 4R A R R
PR TRERAE R B AR 2R LSRR IE, e, Ah ]
AT TR ki N St P 7S R K T AR Y
(I K SECRAT™ o B A] DU AR F 2 P
TEHARBATIR ZEIE, a0: (1) 5 3 FhEEL R0 Sk
(BRI R A BRICIZ) 5 3 Fhig s (1L
P SERCAZ  EE R 4, TR AP IS I8 B
EFE™ C (2) B AKF HARR A R R 92 1
BIEJE™ . (3) BkA RLS 59555 AR BEA 5L
IR E A o (4) 2T 7 B H R B TR SRR,
A5 AR ORI wehie X 245 A JE RARAT O, 5 i A Sk
I A P A5 B iR 22 IR AR FRE RS
WAE ROk, 1) B A5 B R 2B IE AR MZ B IERAR
LR A HEABIE 7R o (5) 858 N LHPs W 4
A( artificial neural network, ANN) 5 AR # [
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CRESRRHE IR R . (6) JB T SR AL BEER PR
(S PR TE AR (PR AL SR AB IETT VR o (7) SERS
BEIE A& TR — AR R IE 7™

b Hes N AR TE HIBRAR 5 U7V, BRIz
IS - SEBR R TR AR, AR Rk Bl o A ie 2 K SC
ATl B P ok T B RAEH.. HLSE, Bk R
TR VK TR S I R LDV, H A o R i i %
PSR (S PR IR X il A2 B i R
BEAT P, S5 LS N REETRE 0, L3R R TR
FHJEE o

2

TELA AR 2 1) SEI K Bk AL IE B R 5 07 %
Hr, H AT R 2 1A RO B R AR HL
RLS 835 KF $iAR M DSRC ik, KB AR
AR BYEJET TBC ik, i st MmN T4
IRE IEROAR, J5 32 3 ik 8 f Jh B B 1] 3 5% 1E 4%
A RLS Bk & T e B 28 5 B OE 77 iE, BERT N
TBC 1 PBC J7 £ IERLBYAL TF 2 %, X 5 H
MR IERR BRE AT i ZEABIE, AT 28PEsE (R HYE
I KF $ARF DSRC k)@ T PBC 77k, Wi
R H AT i i .
2.1 REBEMEAK

SRS AU AR TE 4 AR Bt K 4R R 22 19
FRRLPE, FI) FH 2 GopT A8 43 21 (0 SA0 A 250E BTt
IR AR 22 S AR IE o e AR SR s TR it 7
FFD S B 04 FEAT Ik B 18] A Sk i ok 25 T
ARG, B ERIE LR T8, [T HRAE ST i
S

SEIME S FRAE 1A e R B Re LA BT
HE MERE Dy HEA N

D,= R: (1)

S0 )= Q) (Qu(i)= Q)

- - (2)
Brodi- 002 50u(i)- gu)’
Z0a(i)  Z0i)

Qu= = iz = (3)

XA Qo (i) ASLMIRERY], (i= 1,2, - N);

(i) TR E RS, (i= 1,2, s M); N 1M 5y
S SEAN PR R R RSN, B M> N;Qu N
SR FR AP S0 A Qo S SED & R A
X TR B FR A () 303 B .

SRAH BB Z1) St B 1 ZE 0 AQon (1) R T

TR ZE AQ(i), tF AN

AQu(i)=1 " =1 (4)
T Qa(i)- Qu(i= 1) i= 23 N
Ai(i)=1 " =l (s)
Sl gi- 1) =23, N

HERT
. AQo(i+ 1)+ AQas (1)
Awen (D) =750 (v 1)+ AQi( i)
. . AQu(i+ 1)= AOun(1)
B A e (i) = AQi(i+ 1)— AQi(i) (6)
i

F(i,j)= Aract(i)*™  j=1,2 .6  (7)
WRHRLESE, Aeacr [HF1) BUE G — A Arer €
(0.45,2.21); H¥j= 6 I, F(i,j) T 1. 0
BT AQi(i) 0 FLAQi(i)< 0, KBtk BEA T
FERI 73 A ikK Bk 72 R0 IR 7K B b2 5 356 4y, F 40
XTIX P B R AT T AR E .
(1) BKBOSFE(AQi(i)  0), iRZERE IETFER N
Qo(i— 1)+ AQr(i)
b i-(N+6) 0,i>7 %)
Qon(i= 1)+ AQr(i)c
i-(N+ 6)< 0
K e N RIERE 1R AXH

_Fi-eo+ Fr-ssi+ -4 Fvin
< 7+ N- i (%)

15 N 1, TR L S B IE B R
Qu(i)= Quli= Ut (Q(i)= Qe(i= 1)) (10)
Xi= 2,3, - K, K B0 FPAL
(2)IBKBOS PR AQi(i)< 0), IRERIE N
0ui)= 0u(i) 5= (1)
L S 2T B T A 7548 U 6 5
SRR B, 23200 /A R, it % B,
Ptk SR B, LR (L TR 0B S, 2
WD R 5 FL B PR K BUR B E %, LA
RO RE, 77 RS, ELR G e 54
e, e AR W T K S E R R 5, 5
REFREER 2 LRI R TR R
B S TR, 2 P 1) R WA AR B
R I, e 91t L s 808 AR B 0
W LAY, 5 005 b TE B AR A7 ek
FR R 22K 8 30 0 SRk, TR 2 2 A
2L AT, %07 9 B IEACRAE, 24
VNI, 67 I BT R 22, Yok TR Rt
B 2 M.
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2.2 AR ik

AR B R TR R TR R 2 BA T S A
MRIRZR, ARYE 7 50 Pt 1R 22 SR8 R BRI, FH DA AR
SRR ZEHEAT T, AT SR R TR A R e k. 1R
Toeert, 30 A TR AT L AN B SENE 5 TR A
Z IR 22, R AR TR B [a] AR (A IR
By 5 SRR 12 IR AR, THAE H TR Z1 i 22,
W HMBTARAE b, RIAZ I ZIRIE S B THRAE .

w2 A EE AT Oy

enl= cleit cre 1+ ot Crei-pr 1+ Gr L (12)
Tk 4 R R O

Qc(t+ Llt)= Qc(t+ L)+ vt (13)
Kb ew A+ L) B %I B RIAR 22 6 T8 e N1
B2 R R ZE T BEE, Hoeo= Q(t)— Qc(t); &1
IRZIESG(t+ L) B ZI () R0 5% 22, A2 Rl B 2 1E 2
ST AN 6] 73 SRS VR RS Qe (e L) FRFAR
IEHT RS A, Qc(t+ L1e) AREEAL IE I (A 7
WEAE; ¢, 2, -y ¢ R EBFIHREBAR, 7L H
A, WATRUE 55T RS EAE R BRI A RELG p
DR R R B, — MO B B =

AR A SELS B BORERR SR D, DRI AE S PR AR
FEPARR) T N H SR T [nl I AR B E,
— SRR SRR BERL, SR FH R/ 3R vk i E dR )
TR RN IR T (AR B
RURCRGT T AR 22 0 AH AR 12, =4 Tl B A8 A 0K
I, 40 koK BBk kG B 3T (il Zed s Ad) TR,
AIRE 91 R 22 R R AR AR A, X I RS TE RO AN .
3ok, AR RLIEAR YA Bl 1) 2 Tl i 22 I A K R
R, It DAE SRR ik Z 2 PSR R, X T BOR
IR SR TN A 1B L AN B
2.3 RLS Hi%

RLS 8 TESRLVR (10 JEL AR 2 AN W7 1@ ok 87 1 &R
G AR Gidan th, o B S H0r) il & B2k
BFTRE, MEE) B RedE T R R G A HIRAS T
—EFRMSH AT E. RN

0'= 0+ AB (14)
b 07 A A Al B 0° M BB A2 Hiefi i
= A NBIEE.

MR f /N — 3R, AT DAHE 5 S Zefiti it

e;\c+1: esv+ Gsv+1(y;’v+]_ ek+lgV) (15)
GN+I:RV6N+1(1+ e:£’+ll)1\“‘6]\"+1)_1 (16)
Pyvii= (1— G\"+16§’+ I)PN (17)

KA O NN+ 1) S HAETHE: O NN
SHUGTHE: OV, BRSO &y, AL

e 16 KXKEIR

R & Gy, NS (N+ 1) B85 B Py N3 N 3B
I TTZERE; Py ONER(N+ 1) BARZEWNTT 2R

(15) 2 (17) X PRy FEA T RLS 5k,
HE SGRAET R 17¢ %ﬁﬁ”(ym 1= GL 1@\/) X1
TR Z2, XPRI AR 2 Hu i v & Oy B 1E, 15 LR
2l TR Ove 1o

RLS S35 045 12 BT A Bt o s Assech
He ) 78 THE I ) AT AR I BRI, s SR
TLRYER) B H I RS, (A TK SO A — P et
FR < IR 2R 48, XM IH 3808 — - S ) 02 R
B XTI AR G, BT B B AR S 2 T R
GURPIRZS, Bk Re R AT S5 B, B 245
FIEA. FrEL, J5 8O T RZRALZ A RICIZEL
T E &R ZE ke 5507 1, R RS AR B0 A
o, [ RS T RSL SELVERE BE LT HUPR R R4 1
ENASFHE, BRI RIER Y
2.4 KF # K

KF RIEBOR™ 8% 58 2 477 B (IR &7 72
HER DT B Skt 2 kK I AN M B A i AR IR
AT7 R Rl 222 22 GeRk 25 1e) BB T 1) 1) 30 2538 AR
4, AT FEF R 2 2 GUIRAS 1a) &5 B [F) &
[P A L AR R 2R

Xk= Q-1 Xk- 1+ G 1 U1+ Tic oy (18)

Uy

Zx= H: X+ Y (19)
AP X Nk B2 R GOIRE A E; Qo A
(k= 1) B Z1F] k BZIP RGORES R HRE; X1 R
k- 1) R RGRE R & G- 1 Fon (k- 1) B
Z0) A NHE B U- 3RoR (k- 1) B 21 (1) N 1)
Do 1 RR( k= 1) N2 B RS s o3 FO AR oo 35
AN k= 1) 2 AR Y R RS R Ze kI 2 U
W) & He Nk W ZIEDUIAERE; Vi 9k IFZI 0
I 7 )

BHTUEIR A Geit ik

E{Xo}= Us (20)
VarXo= E{( Xo— Ub)(Xo- Ub)'}=Po  (21)
Cov(Xo, @)= 0 (22)
Cov( Xo, % )=0 (23)

RSB 20, Zo, o Ze, H0E 2 PE T )
N HZEIS, IPEH Xo (i< OB, JB T W
M= 0, BT 2> 0, BT TR

filivt i 22 B R] ai e AR 2 1a) B Pl vk 22 1 B
Puii- o FILRES 7] B8 SR 22 B B8 P SRert 5, B

Pav-1= EfXxik- lfglk—lj (24)
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Xkik-1= X — X (25)
P = E[.%k\kx"z\k] (26)
= X0 — X (27)

A xe AEAE; o NIRTE (k- 1) BFZIFPIRES =
THEAF RN kB Z0 00 TR & o oA kB ZI0G 38
BAH.-

KF 550 7 & i s B /IR, &1 T 7 fa
BART e e PE aAR R P L A B AL
i RS, NI, KF AL IE 8 ARG M5, BARR I,
Rz BN AMEE TR HE KF BRIEHAR S
IKSCHRAL TR Bl SR RUA S5 65, PSR AR AT IR AR 2
TERGCR. (HAE R FH I, KF 75 B4l 1 2R gk 2
g 7 H it KRR SR 2R M, IR OK TR G
T % W5 (1) 3 A BREICER 2 3T 8L, B AR v KF %
TEH ARSI W K AE ML TR A 523 — 52 FIBR il
I, AR Z 0 I KFRSIE BEp AN Wi Y, i EKF
EnKF 1 UKF 2655 H e A188 06 448 A5 2 1
FERR AT T 2R PEAL 35, (75 BEADURE 2 38, (HAL 3
()7 AT VLS AR, Biln: EKF 20K 2 ik
HUE B M Ak 35 T3 G ol 26 M 1 A T EnKF A
UKF, 352 M4 K RAE 5 55 4) Im A L e it
O DRI, X T 1) I A IE R, o v K T
B IX AR L RGUEF 15 i N FVE )
2.5 DSRC ik

DSRC £ IEF 7 R T A5 B A Ay e B2 R 5,
TG TR B N AR B TR R RGN 2R R
REIESNAR 8, B2 Ji 1) N AR & 5 37 kAT 5K 73
5, B AT 45 2R IE 5 B s OV T TR O

FRRRE KRS BUME Ak G R R P R St

Qt)=f[X(1), 8 (28)
A Qo) AR U B0 & X (1) ARER PR AR 2
BN AR RO AR B, 0T 2T ( XAT) A [ B R
®PCE RVHBKER S 5 0 MRS H AR
;¢ AR ]

85 s 7R 2 AN I ) A2 A, A 7 T SR 3 AN
SZ A Rl N AR B RUIR A5 AR & B X (¢) AL IS
Frek, X (28) Al itk A

Qt)=f[X(1)] (29)

Xt 29) 4 vt AR B I, WS T A e AT,
RSP I, 13

O X.,t)=f(Xc, t)+ UAt+ € (30)
P Xe= [xc,, xc,, - xcn]']‘ N TR AR T T 1
WAL IE AR R A; AX= [ Ay, Mo, oo My, |0 A
T WA IEBAR P, (X, 1) WIS Y i 55
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Research advances on real-time correction methods

for flood forecasting

HUANG Yixin', WANG Qinzhao’, LIANG Zhongmin', DENG Xiaodong®

(1. College of Hydrology and W ater Resources, H ohai University, Nanjing 210098, China; 2. Jiangxi Provincial H ydrology
Bureau, Nanchang 330002, China; 3. Jingdezhen H ydrology Bureau of Jiangxi Province, Jingdezhen 333003, China)

Abstract: The background of real time correction for flood forecasting is reviewed, and the research advances in reat time correc

tion are summarized. On this basis, reat time correction was divided into two categories such as the terminal bias correction and

process bias correction. The correction methods in these two approaches were sorted out, and the research results and progress

were presented. Five representative real time correction algorithms, i. e., feedback simulation, auto regressive ( AR) , recursive

least squares (RLS), Kalman filtering (KF) , and dynamic system response curve (DSRC), were introduced, and their character

istics and applicability were analyzed.T he future development direction and research hotspots of reat time correction for flood

forecasting were predicted.

Key words: reat time correction; flood forecasting; feedback simulation; auto- regressive; recursive least squares; Kalman filtering;

dynamic system response

As the most important norr engineering meas-
ure for flood management, flood forecasting serves
as the “eyes and ears”, “advisers” and “ pioneers”
of flood control'". Acquiring accurate and timely
forecasts in advance can reduce or even avoid los-
ses by flood disasters and effectively manage and
protect w ater resources, providing a scientific ba-
sis for flood control decisions and reservoir sched
uling, which can bring significant economic and
social benefits'*! . Flood forecasting includes many
links such as model input, model structures and
parameters, initial values of state variables and
measurements' . Errors in these aspects will
lead to deviations of final forecasts from the actual

values, thus affecting the accuracy of flood forecas

Received: 2026:01- 10 Revised: 2020 05 25

ting models. T herefore, we must correct those er
rors to ensure the practicability and effectiveness of
forecasting models, making the results more relia
ble.

Reaktime error correction of flood forecas
ting, also referred to as realtime correction, indr
cates that forecast inputs, model parameters, state
variables and forecast results are corrected based
on real-time information ( measurement, forecast,
etc.) collected during flood forecasting, so that
flood forecasting errors can be reduced in real

time *®

. A diagram of reattime correction is
shown in Fig. 1, where In(¢— D) represents the irr
put of the measured model at moment (¢— D). Af

ter model calculation, the forecast value or output
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value Out(¢l t— D) of the model at moment ¢ after
the forecast period D can be obtained. These out-
put values can be the flow (water level) at sections
of basin outlets, model parameters, or soil moisture
content of basins, etc. After the corresponding
measurement Obs(¢) at moment ¢ is obtained, a
correction model is established based on the rela
tionship between the forecast values of the model
and the measurements. The corrected results are

re calculated in the model, and the corrected model

Fuplf=dh

. i i _
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output Out(¢) can be obtained. For the next mo-
ment (i+ 1), the same model calculation and error
correction are performed according to the model ir
put In(z+ 1- D) at this moment and the corrected
output Out(¢) at the last moment ¢, so the correc
ted model output Out(¢+ 1) at the moment ( i+ 1)
can be acquired. Repeating the above process, we
can realize the realtime corrected forecasting for
the flood process with a forecast period of L, name

ly from moment ¢ to moment (i+ L ).
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Fig. 1 Flow chart of reaktime correction for flood forecasting

T his paper classified and briefly reviewed the
realtime correction for flood forecasting. Five rep
resentative reaktime correction methods were in-
troduced in detail, and the trend of realtime cor

rection methods in the future was predicted.

1 Review of development of real time correc
tion for flood forecasting

1.1 Research results in an early stage

In the 1960s, the "SCI", systems theory (S),
cybernetics ( C) and information theory (I), in the
systems science, gradually entered a mature stage.
Its theory and techniques have been rapidly applied
in fields such as natural science, engineering and
social economy, achieving many fruits. In 1970, H
no' "', a Japanese scholar, first applied the Kalman
filtering (KF) technique to the hydrologic forecas
ting, which pioneered the research in this direction.
In 1978, Wood et al.!"” described the process of u-
sing the KF recursive algorithm to forecast rainfall
runoff. Since then, a number of information pro-
cessing and correction techniques, represented by
KF theory'"", have been gradually introduced to
flood forecasting, leading to the first boom of intro-

duction.

Based on the research boom and a large num-
ber of achievements in the 1970s, the American Ge
ophysical Union (AGU) held an international sym-
posium in 1978. The results were compiled into
Proceedings of A GU Chapman Conf erence on A p-
plication of Kalman Filtering Theory and Tech-
niques to Hydrology, H ydraulics, and Water Re
sources'™"™ . Later, in A pril, 1980, the International
Association of Hydrological Sciences (TAHS) to-
gether with the World M eteorological Organization
(WMO) held another international symposium on
hydrologic forecasting. Among the 46 papers in the
proceedings of this conference, 16 were related to
the KF theory'""". The papers of these two pro-
ceedings represented the most advanced research
on this topic at that time. For example, Ambrus' "'
introduced the selftuning predictor and applied the
autoregressive moving average (ARM A) model (a
difference model) to forecast the Budapest-Baja
section of the Danube in real time, achieving cor
rection with high accuracy.

T he research and applications of real-time cor
rection for flood forecasting in China mainly
emerged in the 1980s, which were later than those
in other countries. Most of the early correction

techniques were based on manual empirical correc
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6.1416 . .
[01%19 "For some cases with large errors in

tion
flood forecasting, the forecast results were correc
ted directly based on experts experience or by
means of regression analysis, so the estimates could
be improved. There were also statistical methods
based on time series analysis, in which auto regres-
sive (AR) models between forecast errors and er-
rors were established, thus forecasting the future
error sequence based on the existing error se
quence. T hese correction methods basically sepa
rate from forecast models, which could be modeled
independently for convenience.

Around the 1980s, the research on hydrologic
forecast models developed rapidly in China, from
em pirical models to conceptual models and then to
distributed models. A number of real-time correc
tion methods integrated with hydrologic models al
so began to emerge and showed effects. The data
assimilation technique was a representative of such
realtime correction methods, which could effec
tively improve the forecast accuracy of hydrologic
models. T he data assimilation technique mainly n-
cluded filtering methods and calculus of varia-

. 17
t10ns[

. However, the calculus of variations usual
ly assumed that model errors did not propagate
with time, but the errors in hydrologic models did
propagate with time. Thus, the filtering methods
were mostly used in error correction for flood fore
casting. In 1984, G¢''¥ coupled the KF technique in
the filtering methods with conceptual hydrologic
models to achieve independent realtime dynamic
correction for runoff forecasts. This was an impor-
tant technical breakthrough in the reaktime correc
tion. Since then, many filtering algorithms (inclu-
ding the improved KF technique) have been widely
used for reaktime correction of forecast errors in
models and achieved remarkable

hy drologic
effects.
1.2 Recent research results

After the 1980s, the research on reaktime cor
rection for flood forecasting has further developed
with the emergence of new theories and the in-
creasing requirements on applications. One of the
major features was the development from the direct

usage of mathematical correction algorithms to pio-

e 24+ KXKEIR

neering studies suitable for complex flood forecas
ting models and correction models. As a result,
many post-processing techniques and new correc
tion methods have emerged. T hese methods can be
classified into two categories: terminal bias correc
tion (T BC) and process bias correction (PBC).
TBC, in essence, directly analyzes and deals
with forecast errors of terminal flow or water level
(terminal errors), instead of considering the errors
in each link (sub-process) of forecasting and the
propagation of errors in each sub-process. It cor
rects terminal errors to update original forecast
values in real time. There are mainly the following
TBC methods: (1)

19
flow' ™ : It denotes the forecast flow (errors) as a

Substitution of measured

function of flow (errors) at the last one moment or
many moments and substitutes the previous flow
(errors) into the function at each new forecast mo-
ment, thus correcting the flow. (2) Realtime cor
rection of flow forecasting in hydrologic mod
els'****?'1: Based on correlation analysis, it creates
correlation correction models between the forecast
flow of hydrologic models and the actual flow and
corrects the forecast flow of models by substituting
the actual flow in real time. (3) AR error correc
tion'”***': Tt calculates the series of residuals be
tween the forecast flow and the measured flow.
Based on regression analysis, it constructs multr
order AR residual correction models to directly

correct the errors in forecast results of flow. (4)

feedback simulation
[7,2632] ,
) :

Realtime correction of

(FACT factor correction coefficient It uses

the FACT factor, which is established based on
both actual flow and forecast flow, to correct ter
minal flow through feedback simulation. (5) Fore
cast error correction based on hydrological similart
tym}m: It believes that the two basins satisfying
similarity also have similar forecast errors. Thus,
different optimal error correction factors can be as
signed according to different forecast periods of
similar basins, and then forecast error correction
models can be constructed to correct the final fore
cast results. (6) K-nearest neighbor ( KNN) cor
[3540] |

rection : It is a statistical automatic learning

method. Based on regression analysis, this method
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establishes correction models between the forecast
error in the measured period and that at the fore-
cast moment, so as to find K historical flow proces-
ses that are the most similar to the current fore-
cast. Then, it estimates the forecast error at the
current moment by inverse distance weighting and
thus corrects the terminal flow at the current mo-
ment. (7) Realtime correction with back propaga

4F9S1 Tt uses the feedfor

tion (BP) neural networks
ward neural network of the BP algorithm to simu-
late the nonlinearity of forecast models, so as to dy-
namically track the changes in flood forecasting er
rors. Based on regression analysis, it constructs
norr linear AR models of forecast errors. Then it u-
ses existing forecast errors to analyze new errors
and corrects forecast flow, so the terminal errors
can be corrected.

PBC, in essence, first corrects errors in state
variables and parameters in each sub-process (such
as rainfall, runoff and confluence) or forecast mod
els of hydrologic forecasting and then re calculates
models after correction to obtain new forecast val
ues. It reduces terminal errors by reducing errors in
each forecasting link. PBC mainly includes the fol-
lowing methods: (1) Correction based on recursive

[ 44 46]

least squares ( RLS) . It recursively estimates
model parameters with minimizing the quadratic
sum of forecast errors as the objective until the es
timates reach the satisfied accuracy. T his correction
method also has the improved algorithms, such as
the RLS based on fixed forgetting factors, the RLS
based on variable forgetting factors, and robust
RLS ¥ (2) KF!'!P 4045550 1t estimates system
states and assigns a certain weight to the current
forecast by referring to the modern stochastic esti
mation theory of complex systems and the principle
of minimum error covariance, so as to correct state
variables of the system ( such as parameters of
forecast models, objects, errors, etc. ), thus realr
zing reaktime error correction. KF can be applied
to any linear system, such as the confluence system
of segmented river channels described by the

Muskingum method **”

. Nonlinear systems can be
corrected in real time based on filtering techniques

such as adaptive Kalman filtering ( AKF), semr a-

daptive Kalman filtering ( SAKF), extended Kal
man filtering ( EKF), unscented Kalman filtering
(UKF), ensemble Kalman filtering ( EnKF) and
particle filtering ( PF)"™"*' . (3) Reattime classified

correction based on the K-means clustering algo-

. 63, 64
rithm'®*

It first clusters a large amount of infor
mation on historical rainfall and flood, and after
classification, it analyzes the categories (levels) to
which the realtime rainfall and flood belong ac
cording to the characteristics of each category.
T hen according to the model parameters of the cat
egory, it reduces errors of model parameters and
thus corrects original forecast flow. (4) Correction
based on the dynamic system response curve

(DSRC) '*

tems between input and output of flood forecast

"It establishes dynamic response sys

models based on the principle of least squares estr
mation. According to the response system, input
variations are obtained from the responses of out
put variations, and input errors are corrected by the
input variations. Then the corrected input is used
to re-run the flood forecasting to obtain the correc
ted output. The mput variable can be any process
or state variable such as surface rainfall, runoff,
soil moisture content or storage of free water. A
smoothing constraint term can be used to address
the “oscillations” in the applications of the DSRC

7 Some recent studies used the whole

method'
process joint correction based on the DSRC theory
to jointly correct both the input errors and the
model errors' .

T he classification of the two methods of reat
time correction for flood forecasting, TBC and
PBC, is not absolute. Some real-time correction
techniques can be used to correct both terminal er-
rors and process errors. The followings are exam-
ple: (1) the RLS method can estimate parameters
for correction models of both two types of reak

. . [ 44,70, 73]
time correction methods

.(2) The interactive
correction method can correct the time series of
forecast values, model parameters and interactive
correction information based on reference informa
tion such as rainfall distribution, meteorological
cloud charts and engineering applications' >’

(3) The Bayesian method can correct errors by
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comprehensively considering internal and external
factors that influence the accuracy of flood forecas
ting. T he external factors are the mput and output
of forecast models, while the internal factors are
structures, parameters and states of forecast mod
els! ™™ Many correction techniques can also be
jointly used for error correction. T he followings are
example: (1) three omrline recognition algorithms
(infinite memory, fading memory and finite mem o~
ry) are combined with three filters (regular, fading
memory and self-adaptive) to form many joint cor
rection methods!”™ . (2) The AKF technique and
the AR model are combined for reaktime correc

o (3) The RLS algorithm and the AR model

. . . 81
are integrated for real-time correction' . (4) On

tion

the basis of the hetero-associative technique and
knowledge refinement, scholars proposed a com pre-
hensive correction method with multiple informa-
tion sources, correction contents and correction
techniques by imitating the information association
of neural networks in biological brains and storing
all rea-time and historical information as well as
error correction contents and correction algo-
rithms'™®_(5) Artificial neural network (ANN)
and AR model are combined for comprehensive re-
al-time correction ™™ . (6) The optimal error cor
rection method of realtime correction models is

[29]

postprocessors in nature . (7) Reaktime correc

tion and combined forecasting are integrated for
correction'" .

The theories and methods of reaktime correc
tion mentioned above have been widely applied to
practical flood forecasting, which have played a sig-
nificant role in disaster mitigation and prevention,
promoting scientific and technological progress in
the hydrological imdustry. In fact, all realtime cor
rection methods of flood forecasting, in essence, opr
timize forecast or progress variables through differ-
ent algorithms ( realtime correction techniques) to
enhance their real-time updating capabilities, thus

improving the final forecast accuracy.

2 Representative realtime correction techr
niques and their features

In the reattime correction methods for flood

* 26 KXKEIR

forecasting mentioned above, feedback simulation,
AR algorithm, the RLS algorithm, the KF teclr
nique and the DSRC algorithm are frequently used.
Feedback simulation and AR algorithm belong to
TBC. The former one is the practical correction
technique by manual experience, while the latter
one is the fundamental correction method for deal
ing with time series. The RLS algorithm is a typical
comprehensive correction method. It can estimate
parameters for correction models of TBC and PBC
methods, which can also be combined with other
correction techniques for error correction. T his
technique is flexible with wide application. The KF
technique and the DSRC algorithm belong to the
PBC method, and both of them represent the latest

progress.
2.1 Feedback simulation

The reattime correction of feedback simula

I ises valid information available to the sys

tion
tem to correct errors of flood forecasting in real
time based on the similarity of forecast errors. Its
basic principle is to feed back the characteristics of
the forecast flow series and the measured flow se
ries in adjacent periods to the forecast system to
regenerate the corrected flow series, so that the
forecast values can approximate to the measure
ments.

The correlation coefficient R. between meas
urement values and forecast values and their deter
ministic coefficient Dy are calculated by

Dy,= R! (1)

S0i(i)= 00)(Qu(i) - Qu)
R= — (2)

S(0u(i)- 002 S(0u(i)- 0u)?
20000 Z0i(0)

i

Qo= . Qr= (3)

m m

where: Qob(17) is the measured flow series, i = 1,2, -,
N; Q:(7) is the forecast flow series, i= 1,2, ..., M;
N and M are the lengths of the measured flow se
ries and the forecast flow series,and M> N; Qo is
the average flow of the measured flow series; Q1 is
the average flow of the forecast flow series corre
sponding to the measured flow series.

T he difference AQon( 1) between the measured
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flows and the difference AQ(i) between the fore

cast flows at neighboring moments are calculated
by

0 i=1
ob(1)= 4
AQ ( ) in)(i)— in) ([:— 1) i: 2’ 3’ cey N ( )

=1
(5)

AQr(i)= =23 N

0

Q(i)= A(i= 1)
The factor is calculated by
AQob(i+ 1)+ AQon( i)

Avaet (D)= 750, (iv 1+ a0(1)
. AQo(i+ 1)= AQon(i)
or Aracr(i)= AQi( i+ 1)= AQr(]) (6)

The following is calculated by

F(i,j)=Awna(i)"™  j=1,2,.,6 (7

According to experience, the range of Aracr is
generally Arcr € (0.45,2.21) . When j= 6, F(i, /)
approximates to 1. 0.

Since AQi(z) 0 and AQr(17) < 0, the whole
flooding process is divided into the waterrising
process and the water-recessing process. T hen the
flows in these two processes are corrected.

(1) Theerror in the waterrising process ( AQr
(i) 0) is corrected by

Qu(i= 1)+ AQi(i)
) i- (N+6) 0,1>7

Crl=Y ofin 1)+ a0i(i)e (%)

i- (N+6)<0
where: ¢ is the realtime correction coefficient,

which is denoted by

_Fi-so+ Friss+ -t Finion (9)
= T+ N—i

If N = 1, the real-time corrected flow in this
process by feedback simulation is

Qu(i)= Qon(i= 1)+ (Qi(i)= Qi(i= 1)) (10)
where: i= 2, 3, ..., K, and K is the ordinal number
corresponding to flood peaks.

(2) The error in the water-recessing process
[ AQi( 1)< O] is corrected by

0ui)= Qu() B (1)

The reaktime correction technique of feedback
simulation can fully take advantage of measure-
ment and forecast information to establish em piri-
cal formulas. It can re generate forecast flow
through feedback simulation, so as to improve fore-

cast accuracy. Feedback simulation is not related to

flood forecast models, so it can be used universally.
It has a simple principle and does not need to calr
brate parameters. Thus, this technique is always
used in automatic hydrologic telemetering systems,

with strong practicability and wide
[7.26]

applica
tion . However, its correction effect depends on
whether the trend of forecast series is accurate.
When the forecast series cannot accurately grasp
the flow trend in the future, it is also difficult for
the corrected series to accurately forecast the fur
ture flow. Moreover, the real-time correction techr
nique of feedback simulation will accumulate fore
cast errors in the alternating process of flood fore
casting and error correction: when the forecast pe
riod is short, this method has good correction
effects; otherwise, it performs poorly and the fore
cast accuracy is reduced accordingly.
2.2 AR algorithm

Assuming the forecast errors have interde
pendence, the correction algorithm of AR model'
finds patterns from historical forecast error se
quence, which are used to forecast future errors and
thus correct original forecast results. In the fore
casting, it usually constructs error-based AR mod
els (correction models) based on errors between
measurement values and forecast values in several
periods before the forecasting. T hen, based on this
correction model, it calculates the error at the fore
cast moment and adds it to the forecast value,
which is the corrected forecast value at that mo-
ment.

The AR estimator of errors is

CnL= Ccret cre 1+ At Cer it Gor (12)
The corrector of forecast results is

Qc(t+ LI t)= Qc(t+ L)+ w1 (13)
where: é.+ 1 is the estimate of the model error at
moment (¢+ L); e is the calculated value of the
model error at moment ¢, and es = Q(t)- Qc(t);
& 1 is the system residual at moment (t+ L) after
correction, which is the white noise simultaneously
satisfying normal distribution and independence of
time series; Qc(t+ L) is the calculated value of the
model before correction; Qc (t+ Llt) is the calewr
lated value of the model after correction; c1, c2, -5

¢ are AR coefficient series, which can be constants
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and also variable coefficients related to the latest
feedback information; p is the regressive order of
the model, which is generally two or three.

The correction method of the AR model is
simple and requires less information, so it is widely
applied in practice. T he key lies in the determina-
tion of regression coefficients. They are generally
estimated by the least squares method, the recur
sive least squares method or the robust recursive
least squares method based on practical datd*”.
However, the AR model relies on the interdepend
ence of forecast errors: The correction has poor
effects when forecast variables change significant-
ly, such as flood rise and rapid changes in flow near
peaks (inflection points of the curve), which may
cause variations in error patterns. In addition, the
AR correction model relies on the time series de-
pendence of forecast errors, so the errors accumu-
late rapidly during the extrapolation process. This
method is not suitable for large watersheds or long

forecast periods.
2.3 RLS algorithm

The RLS a]gorithm[SO] corrects estimates of
model parameters by adding corrections through
new system input and output, so as to obtain new
estimates of model parameters that more accurately
represent the current state of the system. It is sum-
marized as follows:

0= 0+ AD (14)
where: 0" is the parameter estimate of the new
model; 0 is the parameter estimate of the original
model; AB is the correction quantity.

According to the least squares method, the or

line estimate of the parameter can be obtained

Ove 1= Oy + Gy ((Ynse1— 9119%) (15)
Gvii1= PvOve i (14 Ovs 1 PO+ 1)71 (16)
Rw'+|: (1— G’\+IG{+])PA (17)

where: B+ 1 is the parameter estimate of step (N + 1);
Ov is the parameter estimate of step N; Ov+ 1 is the
new input of the model; yv+1 is the new output of
the model; Gv+ 1 is the gain matrix of step (N+ 1);
Py is the error covariance matrix of step N; Pv+1 1s
the error covariance matrix of step (N+ 1).
Equations (15)-(17) are also called as the bas
ic RLS algorithm. It uses the forecast error(yy+1—

e 28+ KXKEIR

Ov. 10y ), the "innovation", to correct the original
parameter estimate Oy, obtaining a new parameter
estimate Ovs 1.

The RLS algorithm treats all data (‘historical
and upto-date data) equally in the calculation, so it
is suitable for linear and constant systems. Howev-
er, for hydrologic systems, which are nonlinear and
time varying, the equal operation for new and old
data may be not reasonable. For time varying sys
tems, newer data can better reflect the current state
of the system and represent the information of cur-
rent parameters, so they deserve more attention.
T herefore, the methods of fading memory, finite
memory and self-adaptive fading memory were pro-
posed subsequently to improve the basic RSL algo-
rithm. The improved RLS algorithms could better
track dynamic characteristics of systems and obr

tained more satisfactory correction effects'*” "

2.4 KF technique

The KFE correction technique” usually uses
two equations ( state equation and measurement
equation) to describe the entire linear dynamic
process of flood. The state equation indicates the
dynamic variation of the system state vector with
time, while the measurement equation describes the
interdependence between the system state vector
and the measurement vector.

T he state equation is

Xi= Q-1 Xk- 14+ G 1 Uk- 1+ Do (118)

T he measurement equation is

Zv= Hi X+ Wk (19
where: X« is the system state vector at moment k;
@ k-1 is the statetransition matrix of the system
from moment (k- 1) to k; Xx-1 is the system
state vector at moment ( k— 1); Gk- 1 is the mput
matrix at moment (k— 1) ; Uk-1 is the input vec
tor at moment (k — 1); [k-1 is the distribution
matrix of model noise at moment (k- 1); @ is
the model noise vector at moment ( k- 1); Zk is
the measurement vector at moment k ; Hx is the
measurement matrix at moment k ; V; is the meas
urement noise vector at moment k .

T he statistical characteristic at the initial state
is set as

E{Xo}= U (20)
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VarXo= E{(Xo— Uo)(Xo— Uo)"}= Po (21)

Cov(Xo, %)= 0 (22)

Cov(Xo, V)= 0 (23)

With the substitution of measurements Zi, Z2, .-,
Zk, Xx+iis calculated according to the theory of lin-
ear unbiased minimum variance (when i< 0, it is
mnterpolation; when i= 0, it is filtering; when i> 0,
it is forecasting. )

The estimate errors can be calculated by the
expectation Puk-1 of the forecast error of the state
vector and the expectation Pk of the filtering er

ror of the state vector, namely

Po-1= E[& 1 £ 1] (24)
Xrik-1= X — Xk 1 (25)
Piv= E[ﬁk\kxAE\k] (26)
L= X — X (27)

where: x, is the true value; £y - is the forecast
value at moment k, which is calculated by the state
variable at the moment (k — 1) ; &« is the filtering
value at moment k.

Breaking through the limitations of classical
control theory, the KF technique is suitable for sta-
tionary or norrstationary, linear or norr linear, con-
centrated or distributed, multrinput or multtrout-
put systems. Therefore, the KF correction tech-
nique is inclusive and flexible with wide applica-

tion. Scholars' '*?”

combined the standard KF cor-
rection technique with hydrologic models and hy-
drodynamic models and obtained satisfactory error
correction effects. However, KF requires accurate
estimation of system models and noises in applica-
tions. Due to the complex flooding process, the
models describing hydrologic systems and the dis
tribution functions of noise are similar, resulting in
limitations of the standard KF correction technique
in reaktime flood forecasting. Hence, many im-
proved KF correction algorithms have been pro-
posed such as EKF, EnKF and UKF" | T hese
techniques all conduct norrlinearization for propa
gation of mean values and variances to improve the
simulation accuracy. However, they have different
methods of nomr linearization. For example, EKF drr
rectly linearizes nonlinear functions to avoid the
nonlinear process, while EnKF and UKF both ap

proximate relevant statistics based on a large num-

)1 Therefore, these

ber of sampling points ( set
new filtering correction techniques are more applr
cable and have a wider range of applications for
nonlinear systems such as flood forecasting mod

els.
2.5 DSRC algorithm
The DSRC algorithm'” regards the forecast

model as a response system and corrects input vart
ables by calculating system response curves corre
sponding to the input variables in the period. The
corrected input variables are used to re conduct
flood forecasting, so the corrected flow forecasting
process at sections of basin outlets can be obr
tained.

T he flood forecasting model can be simplified
to the following noirlinear system:

Q(t)=fI1X(1). 9 (28)
where: Q(t) is the calculated flow of the model;
X(t) denotes the input variable or state variable of
the forecast model, such as the rainfall P, runoff R
and the storage S of free water in the Xinanjiang
(XAJ) model; 0 is the model parameter;¢ indicates
time.

Assuming that the model parameter does vary
with time, the calculated flow is only influenced by
the input variable and the state variable, namely
X(t). Thus, Equation (28) can be simplified as

(1= F1X(1)] (29

T he right side of Equation (29) is expanded
by the Taylor series. Ignoring all the highrorder
terms and remaining the first order, we have

OX,t)= f(Xc,t)+ UN+ € (30
where: Xc= [ xc,, x¢,, - xcn]T is the initial variable
series waiting tobe corrected; AX = [ Ax1, Axs, -
Av,, ]" is the estimated error of corrected varia-
bles; f (Xc, t) is the mitial calculated flow of the
model; (X, 1) is the measured flow; & [ei, e, --y en]"
is the measured error of flow; U is the response
matrix of the dynamic system, which can be solved
by the backward difference method.

According to the classical least squares metlr
od, we have

AX= (U'U)"'U(Q(X, 1)~ f(Xe,r))  (3])

We can obtain the corrected flow by adding
the estimated error AX to the initial value Xc¢ of
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the corrected variable and then inputting it to the
model for re calculation.

Based on systems and differential theory,
DSRC corrects input variables period by period.
With a strong physical basis, this method does not
lose the forecast period and thus has a good correc
tion effect. In the last decade, many scholars ®®
have corrected process and state variables such as
runoff, storage of free water, surface rainfall and
soil moisture content in the Yangtze river, the
Huaihe river and the Minjiang river by the DSRC
method, and all achieved better correction results
than AR and other correction models. T he possible
instable correction of DSRC in practical applica
tions (ilkFposedness of inversion) can be solved by
the addition of a penalty function to formulas. T he
DSRC algorithm bears partial variations of correc
tion terms with the penalty function, so as to re
duce the sensitivities of correction quantities to
flow variations, assuring the stability of DSRC cor
rection "' . In addition, DSRC correction is ap-
plied with an assumption that terminal errors are
caused by only one (or several) sub-process ( var
iable) in flood forecasting, w hile the other subr
processes or variables do not have errors. Such
correction attributing all terminal errors to the
error of one sub-process or variable is not consist-
ent with the actual situation that the errors of
flood forecasting exist in each sub-process, so it
has limitations. T herefore, a recent study[ 7 pro-
posed an extension of DSRC to correct all the subr
process errors, w hich could further enhance the
correction effect and the forecast accuracy. The
method is described with the simultaneous correc
tion of calculation errors and model errors of areal
precipitation as the example.

In a basin with many precipitation stations, the
quantitative relationships among the density of the
precipitation station network {,, the proportion
r].Rpm (Evp /Erpe ) of the areal rainfall error to the
total error and the proportion Ny (Ewe /Ere )
of the model error to the total error are construc
ted, and Nee + Twp = 1. The relationships are
shown in T ab. 1.

* 30 KXKEIR

Tab.1 Quantitative relationship among N, 5 , Ty o and P,
_m _m

Density of precipitation Proportion of areal Proportion of

stations rainfall error model error

Py m, [ 1= I]'M,P] rlM,P,: Ervp/Enp
O Mg, = 1= e, Mg =Frg/Ere,
0, Mp=1-Typ=0Nyo=Enp/Erg= 1

According to the quantitative relationships in
Tab. 1, the total flood forecasting error Er.p of the
studied basin (with a density of precipitation sta
tions of P) is divided into the areal rainfall error
Ev.pand the model error Ew, paccording to the dis
tribution proportions of the errors.

Eve= Thp X Erp (32

Evp= Ty oX Er.p (33)

T hen, according to the system response theory
of DSRC, the areal rainfall error Er.p and the model
error Emp of the studied basin are corrected at the
same time. The corrected quantity series of areal
rainfall APp and the corrected quantity series of
model parameter Afb can be obtained by

APp= (A"A)"'A"Ervpe= Thp(A'A)"'A" Erp

(34)

A= (B'B)"'B'Ev.o= o (B'B)" 'B'Erp

(35)
where: the total error sequence of flood forecasting
Erp is the difference between the measured flow
series Q(P,0, t) and the forecast flow series
F(Pe, Q6o t); Pepis the areal rainfall series be
fore correction; 6:p is the model parameter series
before correction; APp is the correction quantity of
areal rainfall; A is the dynamic system response
matrix corresponding to areal rainfall; At is the
correction quantity of the model parameter; B is the
dynamic system response matrix corresponding to
the model parameter.

The corrected areal rainfall series Pcpand the
corrected model parameter series 6. p are

Peo= Poo+ APp (36)

0.p= 0.p+ A% (37)

The corrected P cpand G.p are reinputted to
the forecast model, so the final corrected flow

process can be obtained by
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Geo(t)= [ Pup, B, t] (38)

The five representative realtime correction
methods have different features. Feedback simula-
tion is a model of manual empirical correction
methods, which is convenient and practical. T he
AR algorithm and the RLS algorithm both belong
to regression models, which are mature in tech-
niques and easy to implement. They have a wide
range of applications in practice. With the theoreti-
cal advantage, the KF technique is flexible and ap
plicable. Therefore, KF has derived many improved
algorithms, but this type of filtering methods has
high requirements on data. The DSRC method is
the representative of the latest research, with sta-
ble performance and significant correction effect.
Future hydrology will progress rapidly with the
computer technology. Especially with the introduc
tion of new generation of science and technology
such as optimization algorithms, big data process
ing and artificial intelligence, it will enrich and pro-
mote the development and applications of these re-

al-time correction techniques for flood forecasting.
3 Conclusions and prospects

Reakt correction is an important for flood fore
casting. After years of development, a number of
research fruits have been witnessed from simple
AR models to complex KF techniques and from ex-
perts’ empirical correction to artificial intelligence
based correction. T he reaktime correction methods
of flood forecasting can be categorized as TBC and
PBC. T hese methods have various advantages and
play an important role in realtime flood forecas
ting. In general, the emergence of big data makes
the development of real-time correction techniques
of flood forecasting closely linked with the pro-
gress of mathematics and information technology.
The rapid development of artificial intelligence and
machine learning brings new opportunities for the
advancement of realtime correction techniques of
flood forecasting. The correction technique is ex-
pected to make new progress in the following as
pects in the future.

(1) Realtime correction based on assimilation

techniques, such as EnKF and particle swarm filte-

ring, has shown different advantages, which can be
an important research direction in the future. As
the rapid development of space sky-ground inte
grated monitoring network, the monitoring for wa
ter cycles will be greatly enhanced in terms of corr
tent, frequency and accuracy. The monitoring infor
mation of flood will be more detailed in temporal
and spatial scales, and that of other hydrological
cycle elements related to flood will be more aburr
dant. How to make full use of multivariate/ multr
source data and develop the assimilation technique
of realtime correction data of flood forecasting are
worthy to be studied in depth.

(2) Scientific integration of hydro physical
background analysis and mathematical descriptions
of forecast errors is an effective method to improve
the accuracy of TBC. TBC directly deals with terminal
forecast errors, which is convenient and practical
How ever, most of the existing TBC methods rely only
on mathematical means to establish error description
equations for error correction, which hardly explore the
physical generation mechanism of errors. Applications
show that even for the same hydrological forecast
scheme, the pattemn of flood forecasting errors will
be different in case of the same rainfall but differ
ent rainfall centers, stages of water rising and re
cessing, flood magnitudes and seasons.

(3) PBC, which considers the flood process,
will be the main research direction of real-time cor
rection for flood forecasting in the future. In es
sence, the terminal errors of flood forecasting are
accumulated from the errors in sub-processes of
flood forecasting. PBC corrects errors of sulr
processes and thus reduces the final errors, which
is its theoretical advantage. However, it is limited
in practice as the complete intermediate monitoring
data are difficult to obtain. With the help of big da
ta, the detailed monitoring data of intermediate
flood processes such as rainfall, runoff and conflur
ence are more available, and it will further promote
the development of PBC. For example, based on the
system response theory, the DSRC method can be
improved or extended based on the sufficient monrt
toring information of rainfall and runoff. When the

discharge data of numerous water conservation
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projects in a basin are available in real time, nodes
can be set in the Muskingum matrix equation of the
KF method to incorporate the influences of human
activities to correction equations.

(4) The big-databased correction model for
forecast errors is expected to be a new direction of
breakthrough. Although big data analysis has not
achieved substantial progress in real-time correc
tion for flood forecasting, it represents the most
promising direction that will generate break-
throughs in the future. We can search the associa-
tion rules between terminal errors or process errors
and the data based on massive measurements and
their derived data ( including: rainfall, soil mois
ture, storage of reservoirs, base flow of river chan-
nels in the previous period; the center of rainstorm,
spatial and temporal distribution, and rainfall ( in-
tensity) of the current rain, as well as the climate
background and general circulation factors in the
more earlier stage; rainfall and flood series ob-
served in history; forecast results of different mod
els, etc.). This can be achieved by machine learning
algorithms such as random forest, support vector
machine, convolutional neural network ( CNN), re-
current neural network (RNN), long short-term
memory ( LSTM) networks and deep neural net-
work (DNN) . Then big data correction models can

be established for forecast errors.
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